Children’s understanding of fraction and decimal symbols and the notation-specific relation to pre-algebra ability

Abstract

Fraction and decimal concepts are notoriously difficult for children to learn yet are a major component of elementary and middle school math curriculum and an important prerequisite for higher order mathematics (i.e., algebra). Thus, recently there has been a push to understand how children think about rational number magnitudes in order to understand how to promote rational number understanding. However, prior work investigating these questions has focused almost exclusively on fraction notation, overlooking the open questions of how children integrate rational number magnitudes presented in distinct notations (i.e., fractions, decimals, and whole numbers) and whether understanding of these distinct notations may independently contribute to pre-algebra ability. In the current study, we investigated rational number magnitude and arithmetic performance in both fraction and decimal notation in fourth- to seventh-grade children. We then explored how these measures of rational number ability predicted pre-algebra ability. Results reveal that children do represent the magnitudes of fractions and decimals as falling within a single numerical continuum and that, despite greater experience with fraction notation, children are more accurate when processing decimal notation than when processing fraction notation. Regression analyses revealed that both magnitude and arithmetic performance predicted pre-algebra ability, but magnitude understanding may be particularly unique and depend on notation. The educational implications of differences between children in the current study and previous work with adults are discussed.

Publication
Journal of Experimental Child Psychology
Michelle Hurst
Michelle Hurst
Assistant Professor

My research interests include mathematical development and variations in performance across contexts.