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Highlights 

 

• We investigated 4th-7th graders processing of fraction and decimal symbols 

• Children access numerical magnitude across distinct rational number notations 

• Children performed better with decimals than fractions for magnitude and 

addition 

• Magnitude and arithmetic performance predicted pre-algebra ability 

• However, relations to pre-algebra depend on notation and task type 
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Abstract 

Fraction and decimal concepts are notoriously difficult for children to learn yet are a 

major component of elementary and middle school math curriculum and an important 

pre-requisite for higher order mathematics (i.e., algebra). Thus, recently, there has been a 

push to understand how children think about rational number magnitudes in order to 

understand how to promote rational number understanding. However, prior work 

investigating these questions has focused almost exclusively on fraction notation, 

overlooking the open questions of how children integrate rational number magnitudes 

presented in distinct notations (i.e., fractions, decimals, and whole numbers) and whether 

understanding of these distinct notations may independently contribute to pre-algebra 

ability. In the current study, we investigated rational number magnitude and arithmetic 

performance in both fraction and decimal notation in 4th to 7th grade children. We then 

explored how these measures of rational number ability predicted pre-algebra ability. 

Results reveal that children do represent the magnitudes of fractions and decimals as 

falling within a single numerical continuum and, despite greater experience with fraction 

notation, children were more accurate when processing decimal notation than fraction 

notation. Regression analyses revealed that both magnitude and arithmetic performance 

predicted pre-algebra ability, but magnitude understanding may be particularly unique 

and depend on notation. The educational implications of differences between children in 

the current study and previous work with adults are discussed. 

Keywords: Fraction; Decimal; Magnitude; Arithmetic; Algebra   
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Rational number instruction is a major component of most elementary and middle 

school curricula (National Governors Association Center for Best Practices, 2010; 

National Mathematics Advisory Panel, 2008).  However, despite the focus on teaching 

these concepts, children and adults still encounter significant difficulty in understanding 

rational numbers. Recently, educational and psychological research has paid particular 

attention to fraction understanding to identify exactly how it is adults and children think 

about rational numbers in terms of both magnitude and arithmetic (e.g., DeWolf, 

Grounds, Bassok, & Holyoak, 2014; Hurst & Cordes, 2016; Lortie-Forgues, Tian, & 

Siegler, 2016; Meert, Gregoire, & Noel, 2010; Schneider & Siegler, 2010; Siegler, 

Thompson, & Schneider, 2011; Wang & Siegler, 2013) and have identified a link 

between rational number understanding and more advanced math learning, including 

algebra (Booth & Newton, 2012; Booth, Newton, & Twiss-Garrity, 2014; DeWolf, 

Bassok, & Holyoak, 2015a; Hurst & Cordes, 2017; Siegler et al., 2012). Surprisingly, 

however, much of this research has focused on how understanding of fraction notation 

specifically may contribute to algebra learning and ability, overlooking the fact that the 

same magnitudes can be represented using distinct notations (e.g., the magnitude of half 

can be written as 0.5 or 1/2) and these notations are typically taught in different ways and 

at different grade levels. Thus, there remain open questions as to whether the 

demonstrated relation between rational number understanding and algebra may be 

notation-dependent and whether this may change across educational stages.  

In the current study, we aimed to characterize 4th-7th grade children’s processing 

of symbolic rational numbers across distinct notations and clarify its relationship to other 

math domains, specifically pre-algebra ability. Critically, given that fraction instruction 
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and decimal instruction typically begin in different grades, span several years, and are 

often taught separately (e.g., National Governors Association Center for Best Practices, 

2010), it is possible that children learning these concepts may differentially rely upon 

fraction or decimal notation across distinct contexts (e.g., DeWolf, Bassok, & Holyoak, 

2015b; Rapp, DeWolf, Bassok, & Holyoak, 2015). As such, children may not 

immediately understand how to integrate decimal and fraction information (i.e., treat 

them as falling along distinct numerical continua), making some aspects of notation-

dependent rational number learning more critical for advanced mathematical thinking 

than others. Thus, this age group was chosen to provide a window into fraction and 

decimal understanding in children who have recently learned and are currently learning 

these concepts.  

In this study, we have two main goals: First, we aim to shed light on children’s 

processing of symbolic magnitude by examining their ability to compare rational number 

magnitudes presented in distinct notations (fraction, decimal, and whole number). 

Second, we aim to clarify the relation between rational number understanding and pre-

algebra ability in school-aged children in two ways: (1) by directly comparing the relative 

strength of rational number magnitude understanding and rational number arithmetic 

proficiency in predicting pre-algebra performance and (2) by looking at the relation to 

pre-algebra performance for both fraction and decimal notations in particular.  

Symbolic Magnitudes 

 Substantial research has investigated how children and adults process symbolic 

whole numbers (i.e., 1, 2, 3, etc.) using a variety of tasks. One task used to investigate 

magnitude understanding is the number comparison task, in which the participant is 
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asked to rapidly choose which of two symbols represents the larger magnitude. Data from 

this task robustly reveals systematic responding based on the ratio of the two values being 

compared (combining both size effects and distance effects; e.g., Moyer & Landauer, 

1967). For example, comparing 12 and 13 would be more difficult (i.e., result in lower 

accuracy and/or slower reaction time) than comparing 7 and 8 (same distance between 

values, smaller numerical magnitudes) and than comparing 11 and 15 (larger distance, 

similar magnitude). Although there is substantial debate over the model that best 

characterizes the exact nature of magnitude representations (Balci & Gallistel, 2006; 

Cordes, Gallistel, Gelman, & Latham, 2007; Dehaene, 1992, 2001; Siegler & Opfer, 

2003; Verguts, Fias, & Stevens, 2005), it is generally agreed that the presence of ratio 

effects suggests that these magnitudes are mentally represented within an ordered, 

approximate, and analog system (Dehaene, Bossini, & Giraux, 1993; Gallistel & Gelman, 

1992; Meck & Church, 1983; Moyer & Landauer, 1967, 1973). Thus, the existence of 

ratio effects in numerical comparison tasks can inform our understanding of how 

numerical magnitudes are mentally represented.   

 Recently, researchers have used these same numerical comparison tasks to 

explore magnitude comparisons of rational number values. These studies have yielded 

similar behavioral patterns of ratio dependent responding in children (Meert, Gregoire, & 

Noel, 2010; Siegler, Thompson, & Schneider, 2011; Wang & Siegler, 2013) and adults 

(DeWolf, Grounds, Bassok, & Holyoak, 2014; Hurst & Cordes, 2016; Schneider & 

Siegler, 2010; Varma & Karl, 2013). However, unlike whole number ratio effects, the 

ratio effects observed for fractions and decimals may be less robust and more dependent 

on particular aspects of the task and/or stimuli. For example, individuals may rely upon 
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decimal length as a cue to relative magnitude or compare fractions on a component-by-

component basis, without regard for the underlying magnitudes. As such, research 

suggests that decimal and fraction magnitude processing is not automatic (Kallai & 

Tzelgov, 2009, 2014), but instead requires deliberate effort in contexts in which the use 

of alternative, non-magnitude based strategies is prevented (Gabriel Szucs, & Content, 

2013; Ganor-Stern, Karasik-Rivkin, & Tzelgov, 2011; Ganor-Stern, 2013; Meert, 

Gregoire, & Noel, 2010; Schneider & Siegler, 2010). Importantly, however, 

understanding how individuals compare each notation in isolation is not sufficient for 

understanding the rational number system as a whole. Rather, children must come to 

learn how these three notations are related to each other and have an integrated 

conceptualization of the rational number system. Although many people have noted the 

importance of understanding children’s abilities to translate among different 

representations (e.g., Berch, 2016; Moss, 2005; Vamvakoussi & Vosniadou, 2010), there 

remains a relative lack of empirical work investigating how children think about these 

notations in distinct ways. As such, determining whether ratio-effects are found when 

children compare values across notations (e.g., 0.38 vs. 1/3) as well as within each 

notation (e.g., ½ vs. ¾ and 0.5 vs. 0.75) may provide insight into the degree to which 

children may integrate fraction and decimal magnitude concepts.     

 Despite the fact that in many cases decimals and fractions represent identical 

magnitudes (e.g., ¼ = 0.25), the use of distinct notations may lead children to represent 

these magnitudes differently, making understanding the relations between fractions, 

decimals, and whole numbers particularly difficult. For example, when adolescents in one 

study were asked what kind of number could go between two other numbers, they 
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insisted that only fractions could fall between two fractions and only decimals could fall 

between two decimals (Vamvakoussi & Vosniadou, 2010). Relatedly, a greater reliance 

upon one notation may impede learning of other rational number notations, making it 

difficult to understand how one may be related to the other. For example, evidence 

suggests that children’s prior understanding of whole numbers interferes with their 

learning of fractions and decimals. Termed the “whole number bias” (Ni & Zhou, 2005), 

this inappropriate application of whole number knowledge and counting routines has 

been shown to negatively influence children’s understanding of symbolic fractions and 

non-symbolic proportions (e.g., Boyer, Levine, & Huttenlocher, 2009; Jeong, Levine, & 

Huttenlocher, 2008; Ni & Zhou, 2005). Thus, although fractions, decimals, and whole 

numbers are all used to represent rational number magnitudes, children’s pattern of errors 

reveal difficulty relating these notational systems.  

On the other hand, recent evidence reveals that educated adults are capable of 

representing the magnitudes of these values in an integrated way across distinct notations, 

as demonstrated by ratio-dependent responding when comparing rational number 

magnitudes, both within and between notations (Hurst & Cordes, 2016). That is, the 

speed with which they compare a fraction to a decimal, a fraction to a whole number, or a 

whole number to a decimal increases as the ratio between these two values increase (i.e., 

performance improves for larger ratios), revealing that responding is magnitude-

dependent and consistent with the idea that adults may represent values presented across 

these distinct notations within the same ordered and approximate analog magnitude 

system. In light of this, it may be that children’s responding will similarly reveal a pattern 

of ratio dependence consistent with a fully integrated representational system. Along 
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these lines, Siegler and colleagues (Siegler & Lortie-Forgues, 2014; Siegler, Thompson, 

& Schneider, 2011) have recently proposed an integrated theory of number development 

positing that across schooling, children progressively learn to represent more classes of 

numbers (i.e., whole numbers, fractions, decimals, negative numbers) as numerical 

magnitudes. In fact, other data suggest that children who are actively learning fraction 

and decimal notation may be better than adults at actively inhibiting competing whole 

number information while thinking about fractions (Meert, Gregoire, & Noel, 2010; 

Opfer & DeVries, 2008), suggesting that adults’ whole number heuristic-based 

responding may be more practiced and ingrained. Therefore, we might expect children to 

also show ratio dependent responding across distinct notations, providing evidence for an 

integrated representation of the magnitudes represented by symbolic rational numbers 

even early on in symbolic fraction and decimal learning.   

In the current study, we aimed to investigate 4th to 7th grade children’s abilities to 

compare symbolic magnitudes across distinct notations in order to evaluate whether 

children are capable of rapidly accessing the magnitudes associated with fraction and 

decimal notation and whether these representations of magnitude are integrated with each 

other, as evidenced by ratio-dependent responding in cross-notation comparisons.  

Rational Numbers and Algebra 

 The recent surge in research on fraction and decimal understanding is motivated 

in part by evidence suggesting that rational number understanding is related to more 

advanced math learning, including algebra (Booth & Newton, 2012; Booth, Newton, & 

Twiss-Garrity, 2014; DeWolf et al., 2015a; Hurst & Cordes, 2017a; Hurst & Cordes, 

2017b; Siegler et al., 2012). For example, children’s abilities to map symbolic fractions 
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onto number lines has been shown to be predictive of algebra readiness (Booth & 

Newton, 2012) and learning of algebra equation solving (Booth, Newton, & Twiss-

Garrity, 2014). But what exactly is it about children’s rational number knowledge that is 

important for algebra performance?  

 On the one hand, fractions play a substantial and direct role in many algebra 

contexts. For example, understanding rates of change involves creating a ratio between 

two values (slope = change in y / change in x), which necessarily involves working with 

fractions. Thus, at least part of the relation may be very direct and due to the cumulative 

nature of math and recognizing fractions as relevant and useful in algebra contexts. On 

the other hand, there are also indirect conceptual links between algebra and rational 

numbers that may provide relations that are not attributable to the direct overlap in 

fraction knowledge. In particular, it may be that having a strong understanding of rational 

number magnitudes is critical for algebra. That is, understanding algebra often involves 

understanding relations among elements. Thus, children who have a better grasp of how 

the numerator and denominator in a fraction relate to one another to represent a single 

value may also be more likely to pick up on other relations, for example between values 

in an algebraic equation. In addition, an ability to solve algebraic equations requires an 

understanding that variables represent unknown quantities (Linchevski, 1995), including 

values beyond the whole number count list. Thus, at a fundamental level, a conceptual 

understanding of algebraic variables may be facilitated when children have a strong grasp 

of rational number magnitudes.  

 There is evidence in support of this proposed relation between algebra and 

rational number magnitudes, suggesting that an understanding of rational number 
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magnitudes is related to algebra ability (Booth & Newton, 2012; Booth et al., 2014; 

DeWolf et al., 2015a; Hurst & Cordes, 2017) but that this relation may be primarily 

driven by decimal magnitude understanding specifically (DeWolf et al., 2014; Hurst & 

Cordes, 2017). For example, Hurst & Cordes (2017) found that adults’ performance on a 

decimal comparison task was uniquely predictive of algebra ability but fraction 

magnitude performance was not. Relatedly, DeWolf, Bassok, and Holyoak (2015a) found 

that the ability to map decimals onto number lines (another measure of magnitude 

understanding) was a better predictor of algebra performance than mapping fractions onto 

number lines. Importantly, however, those studies that have directly compared decimal 

and fraction understanding have done so with adults (Hurst & Cordes, 2017a; Hurst & 

Cordes, 2017b) and older children (7th graders; DeWolf et al., 2015a), who have had 

substantial practice with both fraction and decimal notation. Adults show better 

performance on magnitude tasks involving decimals (DeWolf et al., 2014; Hurst & 

Cordes, 2016), a notation that children typically learn after fraction notation and thus 

have less exposure to early in rational number instruction. Thus, it may be that these 

individuals have gained practice with decimals as a way to overcome their limitations 

with fractions. Furthermore, recent work has emphasized the importance of not just 

understanding rational numbers in distinct notations, but also in being able to translate 

between notations (e.g., Berch, 2016). Thus, in the current study, we aimed to investigate 

the relation between 4th - 7th grade children’s pre-algebraic ability and their ability to 

compare rational number magnitudes across notation. By doing so, we extend previous 

work focusing on magnitude understanding within individual notations to investigate 

rational number magnitude understanding across fraction, decimal, and whole number 
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notations in a group of children who are still in the process of acquiring rational number 

concepts.  

 In addition, an ability to work with rational numbers in arithmetic procedures may 

also be particularly critical for algebra. Working with rational numbers and algebraic 

problem-solving both require an understanding of complex symbolic manipulation and an 

ability to follow abstract rules and procedures (e.g., Carraher, Schliemann, & Brizuela, 

2000; MacGregor & Price, 1999).  In this case, we might expect that a child’s ability to 

successfully manipulate complex fraction and decimal notation in an arithmetic operation 

(e.g., finding common denominators to perform fraction addition) would be related to 

their ability to solve complex algebraic equations. Prior work with adults supports this 

claim, revealing that both fraction arithmetic and decimal arithmetic performance each 

uniquely predict algebra ability, over and above magnitude understanding (Hurst & 

Cordes, 2017). Research with 7th graders has also found that conceptual understanding of 

the components of fraction notation (e.g., understanding equivalent fractions, the inverse 

of fractions, ratio, etc.) was more predictive than magnitude understanding of fraction 

notation (DeWolf et al., 2015a). Thus, it may be that the ability to engage in complex 

symbolic manipulation, as required by both fraction and decimal arithmetic, may be 

critically important for pre-algebra in ways that are not captured by rational number 

magnitude understanding. However, some evidence suggests that adults may be better at 

fraction arithmetic than decimal arithmetic, despite being better at thinking about 

magnitude using decimal notation, compared to fraction notation (Hurst & Cordes, 2016), 

potentially because they are more able to rely on rules of memorization, and less-so upon 

a deep conceptual understanding. Given that children may show a different pattern early 
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on in their fraction learning, the relative contribution of fraction arithmetic and decimal 

arithmetic abilities in predicting pre-algebraic understanding in children may differ from 

that of adults.  

The current study aims to explore these questions in children who are actively 

learning these concepts (fraction and decimal magnitudes and arithmetic) to see how 

rational number magnitude understanding and arithmetic understanding relate to pre-

algebra ability in children, and how this relation may differ from that found in adults, 

who have already completed instruction on these topics. Given that children may still be 

actively engaging with the conceptual aspects of fraction and decimal notation and 

arithmetic, their performance may reveal different preferences and patterns across the two 

notations and types of knowledge being measured, resulting in a relationship between 

rational number and algebra performance distinct from that reported in previous work 

with adults and older children.  

The Current Study 

In the current study, we measured children’s abilities to use decimal and fraction 

notation both as a representation of magnitude (in a number comparison task) and in 

simple addition. Child participants completed a number comparison task (comparing 

across fractions, decimals, and whole numbers), two rational number addition 

assessments (fractions and decimals), and a pre-algebra assessment in order to address 

two major research aims. First, we aimed to better characterize children’s processing of 

rational number symbolic magnitudes by assessing whether 4th to 7th grade children 

exhibit ratio dependent responding when comparing rational numbers both within 

notation (e.g., fraction vs. fraction; decimal vs. decimal; whole number vs. whole 
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number) and between notations (e.g., fraction vs. decimal; fraction vs. whole number; 

decimal vs. whole number). That is, do children, who are still in the process of learning 

rational number concepts, conceptualize symbolic rational number magnitudes as falling 

along an integrated continuum? Second, we aimed to clarify the nature of the reported 

relation between rational number and algebra abilities in children by investigating how 

distinct knowledge types across distinct notations may be differentially implicated in the 

relation. That is, when measuring rational number understanding in terms of both 

symbolic magnitude understanding across distinct notations (decimal vs. fraction, whole 

number vs. fraction, and whole number vs. decimals) and arithmetic ability (fraction 

addition and decimal addition), what are the relative contributions to pre-algebra ability 

in a group of children who are in the process of actively learning these concepts? 

Method 

Participants 

Forty-one children in Grades 4 to 7 participated. Children were grouped into two 

grade groups: Lower Grade children were in 4th and 5th grades (N=22; M=10.6 years, 

Range: 9.75 to 11.83 years, 11 male) and Upper Grade children were in 6th and 7th grades 

(N=19; M=12.9 years, Range: 11.58 to 14.4 years, 15 male). Data from one additional 

child were excluded because of random responding, resulting from a failure to follow 

directions (e.g., selecting responses without looking at the questions).  

Children were recruited from the greater Boston, MA area and tested at approved 

testing locations, including local after school programs, the participant’s homes, and in 

our laboratory. Children received either a small prize or $10 for their participation, in 

accordance with the regulations set by specific testing locations. All procedures were 
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approved by the Boston College Institutional Review Board and all parents provided 

written consent and children provided written assent. Funding for this work was provided 

by Boston College. 

Stimuli 

Number Comparison Task (adapted from Hurst & Cordes, 2016) 

On each trial, children were tasked to indicate which of two rational numbers 

(decimal, fraction, and/or whole-number) represented the greater numeric value. There 

were six distinct notation comparison types, each presented in a separate block with the 

order of the blocks randomized across participants: Fraction vs. Fraction (FvF; e.g., 1/2 

vs. 3/4), Decimal vs. Decimal (DvD; e.g., 0.50 vs. 0.75), Whole Number vs. Whole 

Number (NvN; e.g., 5 vs. 2), Whole Number vs. Decimal (NvD; e.g., 5 vs. 2.10), Whole 

Number vs. Fraction (NvF; e.g., 4 vs. 9/2), and Decimal vs. Fraction (DvF; e.g., 0.89 vs. 

4/5). The ratio between the two numerical values (larger value / smaller value) presented 

on each trial was chosen from one of two approximate numerical ratio bins: 1.5 (exact 

ratios tested ranged from 1.35 to 1.67) and 2.5 (exact ratios tested ranged from 2.2 to 

2.92). Each ratio bin for each comparison type included 4 unique numeric pairs shown 

twice (once with the largest on the left and once with the largest on the right). Thus, each 

block contained a total of 16 trials (4 pairs x 2 (shown twice) x 2 ratio bins), making the 

entire task 96 trials (16 trials x 6 blocks).  

For fraction stimuli, the values of all numerators and denominators were between 

1 and 10 and no number appeared twice in the same comparison (e.g., 3/4 versus 4/7 

would not occur). This was done to prevent the use of overt componential, whole number 

strategies (as in Schneider & Siegler, 2010). For decimal stimuli, all numbers were 
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presented to the hundredths digit (i.e., two digits after the decimal point), with a whole 

number (sometimes 0) always before each decimal point (e.g., 0.20; 1.25). Decimal 

values ranged from 0.20 to 4.50; Fraction values ranged from 1/5 to 9/2; Whole Numbers 

ranged from 1 to 30. Between each trial a 32pt font (0.5cm2) fixation point appeared in 

the center of the screen.  

All stimuli were made using Adobe Illustrator in 72pt regular Arial font and 

presented on a 13” (33cm) screen (1200 x 800 px). Whole number stimuli were 

approximately 2.5cm high x 1.5cm wide, decimal stimuli were approximately 6cm wide 

x 2cm high, and fraction stimuli were approximately 3cm high x 6cm wide. 

Pre-Algebra Assessment 

 The pre-algebra assessment was composed of 7 questions (with sub-parts, 

resulting in a total of 13 questions) adapted from the Early Algebra Research Project 

(Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011). The questions involved solving 

for unknowns within an expression and finding patterns in data tables (see Appendix for a 

complete set of questions). Importantly, no decimals or fractions were included in any 

questions on the pre-algebra assessment; thus, any relation found between performance 

on the pre-algebra assessment and our rational number measures was not due to a direct 

overlap in skills assessed.  

Rational Number Arithmetic Assessments 

The fraction arithmetic assessment and decimal arithmetic assessment each 

consisted of five addition problems presented in two separate paper booklets (see the 

Appendix for a full set of problems). All problems were presented horizontally, and 

fractions were presented in their formal vertical format (e.g., 
2

3
+

5

6
 ). The booklets 
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contained enough space for children to work out solutions and record their response in 

the “Answer box” provided on the page. 

Procedure 

 Children completed the three tasks in the following order: (1) Number 

Comparison task, (2) Pre-algebra Assessment, and (3) Fraction and Decimal Arithmetic 

Assessments (with the order of the two arithmetic assessments counterbalanced). The 

experimenter remained with the child throughout the experiment and provided general 

encouragement (“Alright!”, “Good job!”) but did not provided specific feedback.  

Number Comparison Task 

Children were shown two numbers on the screen and were asked to press a key on 

the keyboard (right arrow or left arrow for right or left stimulus, respectively) to indicate 

the larger numerical value as quickly as possible, while also trying their best to do it 

correctly. Children were instructed to keep their hand on the keyboard throughout the 

session. Numbers remained on the screen until the participant selected their response and 

a fixation-cross appeared between each trial in the middle of the screen (1000ms) to 

direct attention back to the middle before new numbers became visible.   

The comparison task consisted of six blocks of trials.  Within each block, the type 

of comparison presented was held constant, however each block presented a different 

comparison type (DvD, NvN, FvF, NvF, NvD, DvF).  The blocks were presented in a 

random order. Prior to each block, children saw an instruction screen followed by two 

practice trials (same comparison type as the other trials in that block), in which they were 

given corrective feedback (“Good job! That’s correct” or “I’m Sorry! That’s not 

correct”).  
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Pre-Algebra Assessment 

 The experimenter read each problem instruction with the child and then allowed 

the child to complete the problem on his/her own. Children were allowed to work out the 

problems on paper. Once the child completed the problem, the experimenter moved on to 

read the instructions for the next problem. 

Arithmetic Assessments 

 Children were presented with the fraction addition assessment and the decimal 

addition assessment in separate booklets. The problems in each booklet were presented in 

a set order, with the order of the booklets counterbalanced across participants. Children 

were allowed to work out the problems on paper and recorded their answer in the 

“answer box” on the paper. Children had as much time to as they needed to complete the 

assessments. 

Data Analyses 

Accuracy was used as the primary dependent variable on all tasks. On the number 

comparison task, reaction time (RT) was also recorded and analyzed. For RT analyses, 

only RTs from correct responses and those within three standard deviations of that 

individual’s mean RT for the comparison Type X Ratio combination were included. 

Following these exclusion criteria, in order for data from a comparison Type X Ratio 

combination to be included, the participant had to have scored above 5 out of 8 correct or 

higher (to ensure that the RTs were reflective of at least a basic understanding of the task) 

and have a minimum of 2 included data points (correct and within 3 SDs of individual 

mean). Given the relatively low accuracy on comparisons involving fractions, this 
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resulted in only 20 participants having complete RT data across both ratios and all six 

blocks of notations.   

Two children (both 5th grade) did not complete the arithmetic assessments and so 

are not included in those analyses or the regression analyses, leaving 39 children (20 

Lower Grade children and 19 Upper Grade children) in the regression analyses.  

Results 

Rational Number Magnitude Performance 

We investigated performance on the magnitude comparison task across Notation 

(6: FvF, DvD, NvN, NvD, NvF, DvF) and Ratio (2: Small, Large) using a Repeated 

Measures ANOVA on accuracy, with Grade Level (2: Lower, Upper) as a between 

subject factor. There was a main effect of notation (reporting the Huynh-Feldt correction 

for a violation of sphericity), F(2.98,116.3)=29.5, p<0.001, partial η2=0.43: whole 

number comparisons resulted in the highest accuracy and fraction comparisons resulted 

in the lowest accuracy (MFvF=76%, MDvF= 78%, MNvF=81%, MDvD= 93%, MNvD=93%, 

MNvN=98%). There was also a main effect of ratio, F(1,39)=30.9, p<0.001, partial 

η2=0.4, with higher accuracy on the larger ratio (M=90%) compared to the smaller ratio 

(M=83%).  However, there was also a Notation X Ratio interaction (reporting Huynh-

Feldt correction for a violation of sphericity), F(3.6,141.5)=11.2, p<0.001, partial η2=0.2. 

Follow up tests (p-values reflecting paired t-tests) reveal that there was a significant ratio 

effect on the FvF comparisons (MSmall=63%, MLarge=88%, p<0.001, Cohen’s d = 0.95) 

and on the DvF comparisons (MSmall=74%, MLarge=83%, p<0.01, Cohen’s d = 0.4). There 

was a marginal effect on the NvF comparisons (MSmall=78%, MLarge=83%, p=0.07, 

Cohen’s d =0.29), and non-significant differences across ratio on DvD (MSmall=92%, 
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MLarge=95%, p = 0.16, Cohen’s d = 0.22), NvN (MSmall=97%, MLarge=99%, p = 0.3, 

Cohen’s d =0.12), or NvD (MSmall=93%, MLarge=92%; p = 0.6, Cohen’s d = 0.08).  

Lastly, there was not a main effect of grade, p=0.13, partial η2=0.06, grade by 

ratio interaction, p=0.24, partial η2=0.04, or grade by ratio by notation interaction, 

p=0.56, partial η2=0.02.  However, there was a marginal grade by notation interaction, 

p=0.07, partial η2=0.06. Follow up independent t-tests suggest that children in the upper 

grades were significantly more accurate than children in the lower grades on NvF 

comparisons (p = 0.04) and marginally more accurate on FvF (p=0.09), but did not 

perform differently on any other comparison type (ps>0.3; see Figure 1).  
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Notably, in the previous analyses based on accuracy the NvN, DvD, and NvD 

comparisons (which did not show significant ratio effects) were those comparisons 

resulting in the highest accuracy, with average performance above 90% on all three 

blocks. Thus a failure to obtain ratio effects may have been a function of near-ceiling 
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Figure 1: Performance on the magnitude comparison task across all 6 notation types, both 

ratios, and children from both lower (4th and 5th grades) and upper (6th and 7th grades) 

grade levels 
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performance on those comparisons. Thus, we repeated the same analysis using average 

reaction time on correct responses for these comparison blocks (one participant had 

extremely low accuracy on the DvD block, resulting in too few meaningful reaction time 

data points to be included; N=40) .  

Again, there was a main effect of notation, F(2,76)=23.7, p<0.001, partial 

η2=0.39, with performance on the NvN comparisons (M=940ms) taking significantly less 

time than performance on the DvD (M=1398ms) and NvD (M=1364ms) comparisons 

(paired t-tests p’s<0.001), but DvD and NvD were not significantly different from each 

other (p=0.8). There was a main effect of ratio, F(1,38)=18.9, p<0.001, partial η2=0.33, 

with performance taking longer on the smaller ratio (M=1294ms) compared to the larger 

ratio (M=1175ms). Furthermore, there was a marginal interaction between ratio and 

notation, F(1.78,67.8)=3.1, p=0.06, partial η2=0.08. In particular, the ratio effect found in 

DvD trial data was significantly larger than the ratio effect in NvN (p = 0.02), although 

NvD was in between these and was not significantly different from DvD (p = 0.1) or 

NvN (p = 0.57). However, in all three trial types we did see a similar pattern, with 

significant ratio effects in NvN (MSmall-Large = 65ms; paired t-test: p = 0.007) and DvD 

comparisons (MSmall-Large = 208ms; paired t-test: p = 0.001), and marginally significant 

ratio effects in NvD (MSmall-Large = 84ms; paired t-test: p = 0.06). 

The ANOVA on RT also revealed a main effect of grade, F(1,38)=7.2, p<0.01, 

partial η2=0.16, with children in lower grades taking longer to respond than children in 

the upper grades (MLower=1390ms, MUpper=1078ms) and a significant Notation X Grade 

interaction, F(2,76)=6.09, p=0.004, partial η2=0.14. In particular, children in the upper 

and lower grade levels did not show significantly different RTs on NvN (p=0.2) or DvD 
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(p=0.1) comparisons, but children in the upper grade level were significantly faster than 

children in the lower grade level on NvD comparisons (MLower=1664ms, MUpper=1085ms; 

p=0.001). Grade did not interact with ratio (p=0.6, partial η2<0.01) or with Ratio X 

Notation (three way interaction: p=0.09, partial η2=0.07).  

Arithmetic Performance 

 We compared performance on the fraction and decimal arithmetic tests across 

both lower and upper grade level. Overall, children in upper grades performed 

significantly better than children in lower grades, F(1,37)=4.8, p=0.03, partial η2=0.11, 

and children performed significantly better on decimal addition compared to fraction 

addition, F(1,37)=8.9, p=0.005, partial η2=0.19. There was not a significant interaction 

between grade level and notation, p=0.36, partial η2=0.02 (Lower Grade Level: MFractions 

=53%, MDecimals =77%; Upper Grade Level: MFractions=78%, MDecimals=90%). 

Individual Differences Predicting Math Ability 

 First, we looked at the relative contribution of rational number magnitude 

understanding and rational number arithmetic, across multiple notations, for predicting 

arithmetic ability. We used regression analyses to assess whether accuracy in flexibly 

representing rational number magnitudes (composite score computed as average 

performance on DvF, NvF, and NvD; Model 1) and accuracy on rational number addition 

(composite score computed as average accuracy on fraction and decimal addition 

assessments; Model 2) predicted performance on the pre-algebra assessment. In addition 

to investigating these two predictors separately (only controlling for grade), in Model 3 

we include both magnitude and addition measures in the same model to investigate the 

relative impact of both types of knowledge  
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Rational number magnitude ability (RN Magnitude) was calculated as a 

composite of the scores (i.e., average percent correct across all relevant blocks) on the 

three comparisons that required children to compare between distinct notations (DvF, 

NvF, NvD), as this has been argued to be a critical component of rational number sense 

(e.g., Berch, 2016). Rational number arithmetic (RN Arithmetic) was calculated as a 

composite across both decimal and fraction addition assessments (i.e., average percent 

correct across both assessments). See Table 1 for simple correlations and descriptive 

statistics and Table 2 for complete regression statistics for all models. 

Grade level was a significant predictor of pre-algebra performance (Model 0: 

p=0.04) and so it was included in all subsequent regression models in order to control for 

educational differences in pre-algebra ability.  When looking at RN magnitude and RN 

arithmetic independently, only controlling for grade, both knowledge types explained 

significant additional variance over and above grade (ps < 0.001). Furthermore, when 

both measures were included in the same model (in addition to grade), RN magnitude 

continued to explain significant unique variance (p = 0.004) and the RN arithmetic score 

explained marginally significant unique variance (p = 0.057), over and above each other.  

 Next, we were specifically interested in whether the relations between rational 

number understanding and pre-algebra ability are dependent on fraction and decimal 

notation in particular. That is, beyond rational number understanding across notation (as 

in the previous analyses) we aimed to better isolate the separate contributions of 

understanding fraction and decimal notation, for both magnitude and arithmetic 

separately. Thus, we performed regression analyses with fraction performance and 

decimal performance predicting pre-algebra ability, controlling for grade level. When 
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looking at the magnitude measures, the overall model was significant (R2=0.42, 

F(3,35)=8.3, p<0.001), reinforcing the importance of magnitude understanding as shown 

in the previous analyses, using different measures. However, only FvF magnitude 

performance predicted significant unique variance, β = 0.58, t(38) = 4.2, p < 0.001, while 

DvD magnitude, β = -0.06, t(38) = -0.44, p = 0.66, and grade level, β = 0.17, t(38) = 1.3, 

p = 0.22, did not. Similarly, results of the regression using the arithmetic measures to 

predict pre-algebra performance, the overall model was significant (R2=0.38, 

F(3,35)=7.1, p<0.001), aligning with the previous analyses involving the composite of 

these measures. Furthermore, decimal arithmetic, β = 0.35, t(38) = 2.2, p = 0.03, was a 

significant unique predictor of pre-algebra performance and fraction arithmetic, β = 0.29, 

t(38) = 1.9, p = 0.06, shows a similar, although only marginal, relation. Again, grade 

level was not, β = 0.14, t(38) = 1.0, p = 0.3. 

Performance Across Tasks 

 Mean 

(SD) 

Grade 

Level 

RN 

Arithmetic 

RN 

Magnitude 

Pre-algebra 

Grade 

Level 

- -    

RN 

Arithmetic 

74% 

(29) 

0.34* -   

RN 

Magnitude 

83% 

(12) 

0.24+ 0.56** -  

Pre-

algebra 

84% 

(21) 

0.34* 0.58** 0.56** - 

 

Table 1: Descriptive statistics and bivariate correlations for all variables used in the 

regression analyses (N=39). Correlations are marked based on two-tailed significance: 

p<0.001 (**), p<0.05 (*), or p<0.1 (+). 

 

Full Regression Results 

  Beta Statistic 

Grade Only (Model 0) 
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R2=0.11, F(1,37)=4.7, p=0.04 Grade Level 0.36 t(38)=4.7, p=0.04 

Magnitude Model (Model 1) 

 

R2=0.44, F(2,36)=14.2, p<0.001 

 

Grade Level 0.19 t(38)=1.5, p=0.14 

RN Magnitude 0.59 t(38)=4.6, p<0.001 

Arithmetic Model (Model 2) 

 

R2=0.36, F(2,36)=10.2, p<0.001 

 

Grade Level 0.16 t(38)=1.1, p=0.3 

RN Arithmetic 0.53 t(38)=3.7, p<0.001 

Overall Model (Model 3) 

 

R2=0.50, F(3,35)=11.5, p<0.001 

 

Grade Level 0.13 t(38)=1.0, p=0.3 

RN Magnitude 0.44 t(38)=3.1, p=0.004 

RN Arithmetic 0.29 t(38)=2.0, p=0.057 

 

Table 2: Full regression statistics for all three models (N=39). Outcome variable in all 

models is percent correct on the pre-algebra measure. 

 

Discussion 

 We used a rational number magnitude comparison task and assessments of 

fraction and decimal addition to (1) better characterize how children process fraction and 

decimal notation in terms of both magnitude information and arithmetic and (2) 

investigate how magnitude understanding and arithmetic ability across distinct notations 

may be differentially implicated in the relation between rational number ability and pre-

algebra ability in children.  

Rational Number Magnitude Understanding  

Children did show evidence of systematic ratio-dependent responding when 

comparing magnitudes within the same notation (whole numbers vs. whole numbers, 

decimals vs. decimals, and fractions vs. fractions) and across different notations 

(decimals vs. fraction, although only marginally for whole number vs. fractions and 

whole number vs. decimals). However, the behavioral level at which this ratio effect was 
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observed and the size of these ratio effects differed across notation: fraction comparisons 

showed ratio-dependence in accuracy measures while comparisons not involving 

fractions showed ratio-dependence in reaction time measures. The distinct levels of 

behavior that reveal ratio-dependent responding likely reflect differential fluency with 

these number systems at this point in the children’s education. In particular, consistent 

with adult data, children were less proficient (i.e., lower accuracy) in judging numerical 

magnitudes presented in fraction notation than those presented in either decimal notation 

or whole numbers.  As such, ratio effects in accuracy on fraction comparisons and ratio 

effects in reaction time on non-fraction comparisons may reflect the largest individual 

differences across distinct ratios. That is, when children are first learning (and show 

worse performance with) a notation, they may show ratio dependence in terms of 

accuracy, but as children’s accuracy improves and approaches ceiling levels, ratio effects 

in terms of accuracy may be weaker and less robust. However, children did show ratio 

dependent responding in all single notation comparisons and when comparing between 

fractions and decimals, suggesting they are able to compare magnitudes of rational 

numbers in distinct notations and represent the magnitudes in an integrated analog 

magnitude system, similar to previous work with adults (Hurst & Cordes, 2016). When 

comparing between whole numbers and either fractions or decimals, however, children 

showed only small, marginally significant ratio effects. The smaller, marginal ratio effect 

in fraction versus whole number (NvF) and decimal versus whole number (NvD) 

comparisons may reflect a larger tendency to use heuristics in contexts in which non-

whole number rational numbers (which children may assume are typically less than one) 
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and whole numbers are being compared, perhaps reflecting that integrating these 

notations is more difficult than integrating the other notations (e.g., Ni & Zhou, 2005).  

Of course it is possible that participants may have invoked magnitude-based 

heuristics across all comparison types when performing our task. For example, it may be 

that when two values are on opposite sides of half or when the fraction is being compared 

to 1 (as opposed to another whole number, like 5), the numerical magnitudes chosen may 

impact performance less (resulting in a lower ratio effect) because people rely on a 

benchmark strategy (more vs. less than half) or learned heuristics (“fractions are less than 

one”). In the current study we did not systematically manipulate the stimuli nor include 

enough trials to look at the influence of these potential heuristics on ratio-dependent 

responding, although this may be an interesting direction for future research. In addition, 

one potential issue with our current design is that we did not control for the length of 

decimal values. Thus, it is impossible to know for certain whether children treated the 

decimals like decimals or instead, treated them like whole numbers. Although our data do 

suggest that in the current study decimals and whole numbers were not treated the same 

(DvD trials had larger ratio effects and slower performance than NvN trials, and children 

performed fairly well on NvD trials, which would not be the case if decimals were treated 

like whole numbers), future work could further extend these findings by investigating 

strategies and performance differences across specific magnitudes both within and 

between notations. Overall, however, data suggest that children can conceive of 

numerical magnitudes presented in distinct notations as falling within an integrated 

continuum (in line with Siegler, Thompson, & Schneider, 2011), despite difficulties in 
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explicitly understanding how these notations are related (e.g., Vamvakousi & Vosnaidou, 

2010).  

In contrast to adults who performed better on fraction arithmetic assessments 

(Hurst & Cordes, 2016), the current data revealed that children performed better on 

decimal addition relative to fraction addition. One explanation for this difference between 

the child (this study) and adult (Hurst & Cordes, 2016) findings may be that decimal 

arithmetic has the potential to be easier early on in the learning process, but remembering 

and/or executing procedures long after formal instruction is completed may be easier for 

fraction notation relative to decimal notation. Alternatively, there may not be a difference 

in the relative performance in decimal and fraction arithmetic across educational levels. 

Instead, it should be noted that the child (this study) and adult (Hurst & Cordes, 2016) 

findings relied upon the different arithmetic operations used in the assessments: adults in 

Hurst and Cordes (2016) received addition, subtraction, multiplication, and division, 

whereas children in the current study only received addition. Some evidence suggests that 

a conceptual understanding of rational number multiplication and division is particularly 

difficult, and this understanding can be dissociated from an understanding of the 

individual magnitudes and procedural rules for these symbols (e.g., Lortie-Forgues & 

Siegler, 2017; Siegler & Lortie-Forgues, 2015). Thus, different arithmetic operations may 

highlight distinct patterns in the relation between rational number understanding and 

algebra than the one reported here with addition only. Future work should further 

investigate these differences by looking at distinct arithmetic operations as well as 

potential educational differences in how these arithmetic operations are treated.  
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The results of the current study, revealing that children show an early preference 

for decimal notation for both magnitude understanding and arithmetic, are consistent with 

arguments suggesting that children would benefit from instruction that involves aspects 

of decimal notation (e.g., percentages) before fraction instruction (Moss & Case, 1999). 

In particular, if it is the case that children are able to quickly grasp decimal notation for 

rational number magnitudes then it may more effective to incorporate understanding of 

the relational aspect of proportional values through fraction notation only after children 

have some competence with rational number values (in decimal notation). Future 

research should continue to investigate whether this preference for decimal notation seen 

in children (for magnitude and addition; the current study) and adults (magnitude only; 

DeWolf et al., 2014; Hurst & Cordes, 2016) can be leveraged early in instruction to 

encourage better understanding of rational number values. 

Relation to Pre-Algebraic Ability 

The current data suggest both notational and knowledge-level differences in how 

rational number ability predicts pre-algebra ability in 4th to 7th grade children. First, 

children’s rational number sense, operationalized as their ability to compare magnitudes 

across notations, was a significant and unique predictor of pre-algebra ability, over and 

above rational number addition performance and grade level. Thus, in line with other 

research, rational number magnitude may be particularly important for algebra (e.g., 

DeWolf et al., 2015a; Hurst & Cordes, 2017a). Although the unique contribution of 

rational number addition was only statistically marginal, rational number addition also 

significantly predicted algebra performance. Together, these results suggest some role for 
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both types of knowledge, in line with previous work using a similar magnitude 

comparison task with adults (Hurst & Cordes, 2017a).  

Analyses evaluating notation differences within magnitude and arithmetic 

understanding revealed some evidence of notation dependent relations. Although 

arithmetic understanding in both fraction and decimal notation both uniquely predicted 

pre-algebra ability (although, fraction notation was only marginal), this was not the case 

for magnitude. Specifically, when directly comparing the contributions of fraction 

magnitude understanding and decimal magnitude understanding, only children’s 

understanding of fraction magnitudes, and not decimal magnitudes, explained significant 

and unique variance in pre-algebra ability. These findings contrast with recent studies 

suggesting that decimal magnitude understanding (either through a number line task or a 

numerical comparison task) is a better predictor of algebra ability than fraction notation 

in older children and adults (DeWolf et al., 2015a; Hurst & Cordes, 2017a). On the one 

hand, it may be that the decimal comparisons used in the current study were too easy for 

children, resulting in whole-number-like performance that was almost at ceiling. In this 

case, it may be that the number line task or more difficult comparisons used by others 

(DeWolf et al., 2015a; Hurst & Cordes, 2017a) better-captured decimal magnitude 

knowledge. On the other hand, it may be that the relation between rational number 

magnitude understanding and algebra may differ earlier in the educational cycle, when 

children are in the midst of learning these concepts. There are critical factors of early 

fraction and decimal education that may predict this difference across children and adults 

in different educational stages. In particular, it is likely that the adults (Hurst & Cordes, 

2017a) and older children (7th graders; DeWolf et al., 2015a) tested in previous studies 
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had substantially more experience with decimal notation than the younger children in the 

current study and may have begun to rely more on decimal notation than fraction 

notation. Thus, it may be that fraction magnitudes are more critical early in rational 

number education, while decimals may become more critical after more experience with 

these notations.  Fraction notation is notoriously difficult (e.g., Ni & Zhou, 2005) and 

requires an understanding of the relational aspect of fraction notation as well as an ability 

to compare magnitudes. Thus, an early understanding of fraction notation in children may 

be critically important because it reflects children’s earliest conceptual learning of 

proportional magnitudes. Fractions are typically learned first and are particularly novel 

representations of quantity (i.e., the bipartite structure differs from the place value 

structure of whole numbers and decimals), so being able to understand this notation in the 

absence of an alternative (i.e., before substantial practice with decimals) is likely 

associated with better understanding of rational numbers and/or complex notation, a skill 

that is critical for algebra. Adults and older children, on the other hand, may be able to 

circumvent the difficulties of fraction notation by relying on decimal notation. After 

extensive practice with decimal notation, individual differences in how well older 

children and adults adapt to thinking about magnitudes using decimal notation may 

become a better indicator of rational number magnitude understanding and algebra 

performance. Future research could investigate this question directly by looking at 

conceptual and procedural understanding of both fractions and decimals longitudinally. 

This would allow us to investigate how learning alternative notations (decimals) may 

impact children’s understanding of previously learned notations (fractions) in order to 

better understand the relations between these topics over time.  
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The fact that data from children in our study differed from that found with adults 

is not entirely surprising given the difference of years of experience dealing with rational 

number notation.  However, the contrast between our findings – that children’s fraction 

magnitude processing was most predictive of algebra performance – and those of DeWolf 

et al. (2015a) obtained with slightly older children may be more striking.  However, it 

should be noted that the magnitude measure employed in DeWolf et al., the number line 

task, is distinct in format and content to that of our magnitude comparison task. First, the 

number line task requires an explicit spatial representation (mapping number onto a line), 

which may involve a distinct set of abilities in addition to understanding decimal 

magnitudes that map onto algebra performance. Our magnitude comparison task, on the 

other hand, requires both an understanding of the components of rational number notation 

as well as an ability to actually compare rational number magnitudes. Thus, in line with 

other findings suggesting that an understanding of the relational structure of fractions is 

significantly predictive of algebra ability in 7th graders (DeWolf et al., 2015a), it may be 

that our magnitude comparison task assessed symbolic understanding of the relational 

structure in addition to magnitude representation. Thus, although the current study does 

emphasize the importance of symbolic fractions, based on the potential issues with the 

decimal task in the current study (i.e., ceiling performance levels; potential for whole 

number based responding) and the findings of other recent work (DeWolf et al., 2015a), 

the current study cannot rule out that understanding decimal notation may also be vitally 

important. Thus, the differences across magnitude tasks and the specific types of 

knowledge leading to a relation between performance on these tasks and pre-

algebra/algebra are relatively open questions and should be pursued further.  
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Lastly, given that even children in the current study showed distinct patterns of 

performance between measures of accuracy and reaction time on the same tasks, it may 

be that the relation to algebra also depends on the level of behavior (e.g., accuracy vs. 

reaction time) being measured. It should be noted that there was not a significant 

correlation within the current dataset between average reaction time on the decimal 

versus decimal comparisons and algebra ability, similarly to what was reported with 

accuracy. However, this may be due, in part, to differences when measuring fluency (RT) 

on the comparison task and proficiency (accuracy) on the algebra assessment. Future 

research should investigate differences across distinct aspects of magnitude knowledge, 

for example: symbolic understanding, mapping between symbols and spatial 

representations, comparing magnitudes, and etc., using various levels of behavior (e.g., 

fluency, accuracy, strategies, etc.) in order to better understand how each of these aspects 

of symbolic magnitude understanding are related to algebra ability.  

 It is also worth noting that the current study used a measure of pre-algebra ability 

that was primarily focused on understanding math equivalence and the functional relation 

among elements, but did not rely on the specific use of rational numbers. This was a 

purposeful choice in order to look at more indirect relations between pre-algebra and 

rational numbers, for example working with unknown values and creating or using 

relations among values in a systematic way. However, there are many other components 

of pre-algebra and algebra understanding that the current assessment did not directly 

assess (e.g., Linchevski, 1995). Thus, future work should further investigate the relation 

between rational number processing and advanced math by specifically investigating and 

comparing distinct aspects of pre-algebra and algebra learning. For example, it may be 
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that math equivalence is a particularly relevant aspect of pre-algebra in terms of fraction 

understanding, since they both require an understanding the relations between different 

components of the math symbols.  

 In sum, the current work suggests that children represent rational number 

magnitudes in an integrated system across distinct notations by revealing magnitude 

dependent responding within notations and when comparing across distinction notations, 

although integrating fractions and decimals with whole numbers may be more difficult 

than integrating fractions and decimals with each other. Furthermore, children showed 

worse magnitude and arithmetic understanding of fractions compared to decimals, even 

early on in the learning of both notations. Lastly, the current data suggest that both 

rational number magnitude understanding and arithmetic ability are related to pre-algebra 

in children. However, the specific notations primarily driving these relations may be 

different from the relations seen in adulthood (Hurst & Cordes, 2017a). Therefore, future 

research should continue to investigate conceptual and procedural understanding of 

rational numbers and how these skills and conceptual knowledge are related to pre-

algebra and algebra ability. Most notably, however, the current study highlights the 

importance of investigating children’s understanding of rational numbers using both 

fraction and decimal notation across various educational stages, as they may be 

differentially related to and critical for pre-algebra and algebra understanding.  
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Appendix 

Complete list of questions from the pre-algebra assessment 

 

1) Find the number that goes in each box: 
 

+ 9 = 8 + 5 + 9 6 – 4 + 3 = + 3 

  

2) Decide if each number sentence is true or not 

89 + 44 = 87 + 46  True False Don’t Know 

7 + 6 = 6 + 6 + 1   True False Don’t Know 

3) In each of these sentences find the value of the letter. In other words, what value 

for the letter will make the sentence true? 

Find the value of z:  z + z + z = z + 8 

Find the value of c:  c + c + 4 = 16 

 

For each of these, you have to either figure out the rule used in the table or use a rule give 

to you.  

4) Fill in the missing values in the table using the rule at the top.  

5) Which of the number sentences shows a rule used in the table below?  

a. B = A – 4 

b. B = A – 1 

c. B = 2 x A – 1 

d. B = 2 x A + 1 

 

For this problem, you’ll have to figure out the rule that is used in the table.  

6) Fill in the missing values in the table.  

7) What is the rule for figuring out what number belongs in the column B? 
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Complete list of questions for the Fraction Arithmetic Assessment 

 

Problems in the fraction assessment included (in this order):  

 

 
2

3
+

5

6
             

2

5
+

3

4
             

1

2
+

4

7
             

5

8
+

2

4
             

3

9
+

2

3
 

 

 

 

 

Complete list of questions for the Decimal Arithmetic Assessment 

 

Problems in the decimal assessment included (in this order):  

 

0.5 + 0.38 0.21 + 0.63 0.78 + 0.19 0.45 + 0.8 0.53 + 0.49 

 


	On each trial, children were tasked to indicate which of two rational numbers (decimal, fraction, and/or whole-number) represented the greater numeric value. There were six distinct notation comparison types, each presented in a separate block with th...
	For fraction stimuli, the values of all numerators and denominators were between 1 and 10 and no number appeared twice in the same comparison (e.g., 3/4 versus 4/7 would not occur). This was done to prevent the use of overt componential, whole number ...
	All stimuli were made using Adobe Illustrator in 72pt regular Arial font and presented on a 13” (33cm) screen (1200 x 800 px). Whole number stimuli were approximately 2.5cm high x 1.5cm wide, decimal stimuli were approximately 6cm wide x 2cm high, and...

