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Abstract 

 Fractions are a challenging mathematics topic for many elementary and middle school 

students, and even for adults. However, a growing body of developmental research suggests that 

young children can reason about visually presented proportions, well before fraction instruction, 

providing insight into how fractions might be introduced to improve learning. We designed a 

card game to teach 1st and 2nd grade children (N = 195, including a racially and economically 

diverse sample from the U.S.) about fractions in one of three ways. In the Actively Divided 

condition we iteratively divided an area model into equal-sized units, in the Pre-Divided 

condition we used an area model with the end-state of the Actively Divided condition, and in the 

Non-Divided condition we used a continuous representation of the fraction magnitude that was 

not divided into unit-sized parts. Children in the Actively Divided condition demonstrated larger 

improvements matching symbolic fractions and visual fractions (i.e., pie charts) than children in 

the other two conditions. Post-hoc analyses of children’s gameplay revealed that the Actively 

Divided condition may have provided a more optimal level of difficulty for young children than 

the Pre-Divided condition, which was particularly difficult, and the Non-Divided condition, 

which was trivially easy. These differences in gameplay performance provide insights into 

possible mechanisms for our results. We discuss open research questions highlighted by this 

work and implications of these findings for both the development of proportional reasoning and 

fraction learning.  

Keywords: proportional reasoning; fractions; card games; non-symbolic fractions; area models 
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Introduction 

Fraction knowledge is an important gatekeeper for success on more advanced math 

topics, particularly algebra, which in turn is a gatekeeper for further math education (Booth & 

Newton, 2012; Siegler et al., 2012; Smith, 1996; Spielhagen, 2006). Fractions are also important 

for the workforce, with over two-thirds of adults in the US using rational numbers for their work 

(Handel, 2016). Unfortunately, despite the extensive time dedicated to fraction instruction 

throughout grade school, many students demonstrate a poor understanding of fractions that 

persists into adulthood (Ciosek & Samborska, 2016; Hecht & Vagi, 2010; National Mathematics 

Advisory Panel, 2008; Siegler & Lortie-Forgues, 2015; Siegler & Pyke, 2013). Thus, students’ 

poor proficiency with fractions can have lasting consequences on future school success and 

career trajectories. In contrast to these fraction difficulties, infants and young children have 

sophisticated intuitions about non-symbolic proportional quantities (Boyer et al., 2008; Boyer & 

Levine, 2012; Denison et al., 2013; Denison & Xu, 2010; Hurst & Cordes, 2018a; Jeong et al., 

2007; Kushnir et al., 2010; McCrink & Wynn, 2007). This contrast between early non-symbolic 

intuitions and later difficulty during formal fraction education has led researchers to suggest that 

children’s non-symbolic understanding of proportion can, and should, be leveraged to support 

their symbolic fraction learning (e.g., Boyer & Levine, 2015; Matthews & Hubbard, 2016). 

However, it is not clear what kind of non-symbolic representations should be used or how they 

might support symbolic fraction learning. In the current study we address these questions using a 

fraction card game that varies the features of visual fraction representations used to help students 

compare symbolic fraction magnitudes. Importantly, we draw upon prior research investigating 

the development of children’s reasoning with non-symbolic visual proportions to generate clear 

predictions about the features of non-symbolic area model representations that are likely to best 



CONNECTING SYMBOLIC AND NON-SYMBOLIC FRACTIONS 

 4 

support symbolic fraction learning. Our results have implications for both theories that 

characterize symbol learning and fraction education, as learning symbolic fractions is 

particularly difficult.  

Understanding how people connect symbols to non-symbolic representations, often 

referred to as the symbol grounding problem, is a central question of human cognition across 

many different domains (e.g., Harnad, 1990). In the case of proportion, recent evidence suggests 

that humans have an analogue non-symbolic representation for proportions and can map that 

analogue non-symbolic representation to symbols (e.g., Binzak & Hubbard, 2020; Kalra et al., 

2020; Lewis et al., 2016). However, understanding how people reason about proportion is further 

complicated by the variability in how it can be represented, both symbolically (e.g., fractions, 

decimals) and non-symbolically (e.g., subset of items, part of a whole object). For example, 

people are better able to compare the magnitudes of decimals than fractions (DeWolf et al., 

2014; Hurst & Cordes, 2016, 2018b) and are better able to compare the magnitudes of  non-

symbolic fractions when the representations are continuous (e.g., line lengths, undivided shapes) 

rather than discrete (e.g., sets of dots, divided shapes; Boyer et al., 2008; Hurst & Cordes, 2018a; 

Park et al., 2020). Furthermore, when asked to directly map between symbolic and non-symbolic 

representations, adults prefer and are better at mapping fractions with discrete rather than 

continuous representations but are better able at mapping decimals with continuous rather than 

discrete representations (DeWolf et al., 2015). Together, these findings suggest that although 

people can map symbolic and non-symbolic representations of proportions to one another, the 

type of representation impacts this mapping. The current study adds to this growing literature by 

exploring how specific features of non-symbolic fraction representations, namely how discrete 



CONNECTING SYMBOLIC AND NON-SYMBOLIC FRACTIONS 

 5 

information is presented in an area model, can impact children’s ability to learn the meaning of 

fraction symbols.  

In addition to being an important component of theories of proportional reasoning, visual 

representations have been used in the classroom to support fraction learning for decades and are 

a recommended component of fraction instruction (Matthews & Hubbard, 2016; National 

Governors Association Center for Best Practices, 2010; Rau & Matthews, 2017). However, the 

variability across different representations has resulted in substantial disagreement about the 

specific type of visual representation that best supports fraction learning. Area models, such as 

pie charts or rectangles that are divided into units to reflect the denominator and partially colored 

to reflect the numerator, are likely the most common representation of fraction values. In the 

United States, partitioning shapes into parts is the first introduction to fractions for many 

students (National Governors Association Center for Best Practices, 2010). Furthermore, area 

models are heavily used in US mathematics textbooks (Alajmi, 2012) and both children and pre-

service teachers are better able to use area models than other kinds of representations (Kaminski, 

2018; Luo et al., 2011). These representations have the benefit of clearly defining the whole (i.e., 

the entire shape) and conveying the specific part-whole values (i.e., the number of colored units 

out of the total number of units), but they are limited in their ability to continuously represent 

improper fractions (i.e., fractions that are larger than one, such as 5/2) as these numbers 

necessarily require multiple wholes.  As an alternative visual model, researchers and educators 

have increasingly focused on number lines as a tool for representing numerical magnitudes (e.g., 

Hamdan & Gunderson, 2017; Siegler et al., 2011; Siegler & Opfer, 2003; Siegler & Ramani, 

2009). Some experimental intervention and curriculum studies have found that teaching children 

to represent fractions on number lines improves their ability to compare fraction magnitudes 
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more so than area models (Gunderson et al., 2019; Hamdan & Gunderson, 2017; Saxe et al., 

2013). Furthermore, when 4th to 6th grade children were asked to map a fraction onto a number 

line, they were significantly less likely to partition or divide up the number line than they were to 

partition a pie chart (Hurst et al., 2020), suggesting that number lines may be particularly useful 

for eliciting continuous magnitude-based thinking. However, the question of which visual model 

is better for learning may not have an all or nothing answer and instead depend heavily on 

specific features of the model, how that model is used, and what concept we are expecting 

children to learn (e.g., Ainsworth, 1999; Rau & Matthews, 2017). Thus, in the current study, 

rather than comparing different types of visual representation (e.g., pie charts vs. number lines), 

we instead focus on a specific feature of visual representations: the availability and salience of 

relative units. 

Prior work investigating young children’s informal reasoning with visual proportions 

suggests that the availability of discrete countable units does impact their non-symbolic 

proportional reasoning.  Young children who do not yet understand symbolic fractions (e.g., as 

young as 1st grade) are able to reason about proportional information with continuous area 

models that are not divided (e.g., 75% red and 25% blue; Hurst & Cordes, 2018a; Jeong et al., 

2007). However, when the area model is pre-divided into countable pieces, these same children 

tend to focus on the number of salient numerator pieces and make systematic errors, such as 

deciding a spinner with 4/9 red pieces is more likely to land on red than a spinner with 2/3 red 

pieces because 4 > 2 even though 4/9 < 2/3 (e.g., Boyer et al., 2008; Hurst & Cordes, 2018; 

Jeong et al., 2007). Furthermore, this over-attention to the numerator, at the expense of the 

relational fraction information, is commonly referred to as the whole number bias and continues 

when children learn symbolic fractions in later grades (e.g., Ni & Zhou, 2005). Taken at face 
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value, this prior work might lead to the hypothesis that continuous undivided area models would 

also be more effective for symbolic fraction instruction. However, these continuous 

representations do not convey the specific components of fraction symbols (e.g., both 3/4 and 6/8 

would have the same continuous representation), and people prefer to map fractions with discrete 

representations rather than with continuous ones (DeWolf et al., 2015). Thus, although 

continuous area models may be useful for thinking about proportion magnitude, the utility of 

these representations for teaching children how to interpret discrete fraction components (such as 

“3/4” being 3 parts out of 4 parts) may be limited.  

  Thus, given the potential shortcomings of both entirely continuous models, which do not 

have visible units at all, and entirely discrete models, which highlight the number of units in a 

way that leads to errors, we investigated a third alternative. We developed an area model that 

makes discrete countable units available but uses iteration to highlight relative unit size and 

connect the discrete countable units to continuous magnitude. Prior work has emphasized the 

importance of building on children’s understanding of measurement, and specifically iterative 

units, to support fraction learning (e.g., Lamon, 1993; Pitkethly & Hunting, 1996; Sophian, 2007; 

Tzur & Hunt, 2015), including helping children bridge their understanding of whole numbers 

and fractions (Boyce & Norton, 2016; Sophian, 2007) and improve their understanding of 

fraction arithmetic (Braithwaite & Siegler, 2021). Furthermore, the idea of iterating units might 

be particularly important for helping children move from an immature part-whole conception of 

fractions to a more advanced measurement conception of fractions (Norton & Wilkins, 2009; 

Wilkins & Norton, 2018). However, given that children also make systematic errors with the 

part-whole interpretation of fractions (Miura et al., 1999; Paik & Mix, 2003) and visual 

proportions (e.g., Boyer et al., 2008), it may be that highlighting relative unit size through 
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iteration can also improve this earlier developing skill of mapping a single symbolic fraction to a 

part-whole visual proportion. Moreover, this approach allows us to compare a specific feature 

(the saliency of fraction units) across one type of visual representation (i.e., area models), in 

order to formulate and test specific theoretical predictions about children’s proportional 

reasoning. 

The Current Study  

We designed an instructional fraction game, based on the card game War. Although 

previous studies have shown success in improving fraction learning through modifications of the 

card game “War” (Gabriel et al., 2012; Leutzinger & Nelson, 1980), we were specifically 

interested in using the basic game structure to investigate how the availability and salience of 

units impacts children’s fraction reasoning by comparing different area models: entirely 

continuous, entirely discrete, and a hybrid model that actively highlights the unit-based 

components of fractions.  

We focused on children in 1st and 2nd grade –who have not yet received formal fraction 

instruction – for three reasons. First, we were interested in measuring different aspects of 

children’s fraction knowledge, including their ability to compare symbolic and visual fractions, 

their understanding of equivalent fractions, and their more basic knowledge of mapping fractions 

to part-whole visual representations. There has been a recent surge in research focused on 

understanding how people reason about fraction magnitudes, both symbolically and non-

symbolically, much of which suggests that these skills are critically important components of 

fraction learning (e.g., Boyer et al., 2008; DeWolf et al., 2014, 2015; DeWolf & Vosniadou, 

2015; Hurst & Cordes, 2016, 2018a; Kalra et al., 2020; Möhring et al., 2016; Siegler et al., 2011, 

2012). However, even before being able to reason about the relative size of fraction magnitudes, 
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children must learn how to interpret a single fraction, X/Y, as corresponding to X parts out of a 

whole with Y parts (Norton & Wilkins, 2009; Wilkins & Norton, 2018). The Common Core 

State Standards describe this skill as a fraction benchmark in 3rd grade, but it is introduced for 

some simple fractions in 2nd grade (National Governors Association Center for Best Practices, 

2010). Thus, we targeted children who were unlikely to have formally been taught symbolic 

fractions, or at most had been introduced to some simple unit fractions (e.g., “one fourth” or “one 

half”), so that we could measure their basic understanding of the part-whole interpretation of 

fractions, as well as their understanding of more advanced fraction concepts, such as relative 

magnitude and equivalent fractions. Second, prior work has found that 1st and 2nd graders make 

whole-number based errors when identifying fraction symbols, such as erroneously mapping 2/3 

to an image of 2 black dots and 3 grey dots (equivalent to 2/5 rather than 2/3; Miura et al., 1999; 

Paik & Mix, 2003), but that these errors are malleable (Mix & Paik, 2008). Thus, although 

iterative units are typically thought to be important for moving beyond the part-whole conception 

of fractions (e.g., Norton & Wilkins, 2009; Wilkins & Norton, 2018), this age group allows us to 

investigate whether area models with iterative units are also helpful for preventing whole number 

based errors when identifying the part-whole interpretation of fraction symbols. Third, and lastly, 

prior work with non-symbolic proportional reasoning suggests that 6-year-olds, who are typically 

in 1st grade in the USA, can reason well with visually presented continuous proportions, but 

struggle with visually presented discrete proportions (e.g., Hurst & Cordes, 2018a; Jeong et al., 

2007), making this a critical developmental age group for investigating the utility of visual 

proportions for scaffolding symbolic fraction learning in a way that aligns with the proportional 

reasoning literature more broadly.   
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Therefore, in the current manuscript we investigated how training with area models that 

vary the availability and saliency of discrete units improves children’s part-whole interpretation 

of fractions, measured by their ability to map symbolic fractions onto non-symbolic 

representations. We predicted that drawing children’s attention to the meaning of the numerator 

and denominator through iterative unit partitioning (Actively Divided condition) would best 

support children’s learning of the mapping between symbolic fractions and visual fractions, in 

line with other work highlighting the role of partitive unit-based reasoning in early fraction 

learning (e.g., Boyce & Norton, 2016; Sophian, 2007; Wilkins & Norton, 2018). In contrast, we 

predicted that continuous, non-partitioned models (Non-Divided condition) would be suboptimal 

because continuous representations do not convey information about how to connect the visual 

representation to symbolic fractions and thus may be insufficient for supporting the mapping 

between these representations. Thus, we predicted that children in the Actively Divided 

condition would outperform children in the Non-Divided condition. We further predicted that 

using static and pre-divided models (Pre-Divided condition), which are most similar to those 

used in fraction instruction, would result in intermediate performance relative to the other 

conditions as this condition provides the discrete information necessary to make the mapping, 

but in a way that might lead to whole number-based errors. 

In addition to measuring children’s ability to map between symbolic and non-symbolic 

representations of fractions, we also included additional tasks measuring children’s ability to 

compare and equate symbolic and visual fractions. These tasks were included for two reasons: 

(1) to investigate the generalizability of the benefit of unit iteration for supporting different 

fraction concepts and (2) to address separate research questions about children’s fraction 

knowledge. Specifically, we were interested in how children’s ability to work with fractions 
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differs based on the format of the fraction (symbol vs. visual spatial fraction) and the concept 

being measured (fraction equivalence vs. magnitude comparison), as well as how these more 

advanced skills relate to children’s ability to map a symbolic fraction to a non-symbolic 

representation, as a measure of their more basic part-whole knowledge of fractions. We chose to 

measure these more advanced skills because magnitude comparison is often used as a measure of 

children’s fraction knowledge, allowing us to compare our findings with the broader literature, 

and equivalent fractions are reliant on the multiplicative relations of numerators and 

denominators (e.g., 2/4 = 4/8). However, these additional tasks had low reliability estimates with 

children performing around chance, suggesting that children in the present study found these 

tasks very difficult, either because of their immature understanding of fractions and/or general 

task demands. This is likely due to the young age of these children, which was a deliberate 

decision based on our developmental hypotheses of when the availability and salience of units is 

likely to have the largest impact on children’s initial learning of fractions. Nevertheless, the age 

of children in the current study may have undermined our ability to effectively measure these 

more advanced skills. Therefore, although these tasks and additional research questions were 

included as part of our pre-registration, we do not report them in the current manuscript. For full 

transparency a complete write up of the methods and results for these tasks is included in 

Supplementary Materials and all data is accessible via the OSF project page.  

Method 

Participants 

As preregistered, our final sample included 195 1st and 2nd grade children, randomly 

assigned to one of three between subject conditions: Non-Divided area model condition (n = 65; 

Mage = 89.7 months, range = 77-111 months; 35 1st graders and 30 2nd graders; 21 boys, 44 girls, 
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0 undisclosed/other), Pre-Divided area model condition (n = 65; Mage = 90.2 months, range = 76-

107 months (one missing age information); 35 1st graders and 30 2nd graders; 31 boys, 34 girls, 0 

undisclosed/other), and Actively Divided area model condition (n = 65; Mage = 89.9 months; 

range = 77-103 months; 35 1st graders and 30 2nd graders; 31 boys, 34 girls, 0 undisclosed/other). 

This sample size was chosen a priori (using the pwr package, Champely, 2018) to provide 80% 

power to detect condition differences as small as f2 = 0.04 (considered a small effect; Cohen, 

1992) in the regression analyses with alpha of 0.05. Four additional children (two 1st graders and 

two 2nd graders) completed the pre-test but not the post-test (due to absences or refusal), and 

therefore, in line with our pre-registered plan, are not included in the primary analysis of pre-to-

post-test learning but are included in analyses that involve pre-test only. One additional child 

started pre-test but did not finish the session and is therefore not included in any analyses.  

Children were randomly assigned to condition within their grade (1st or 2nd grade; to 

ensure a similar grade distribution across conditions) and in smaller sets (e.g., a balanced 

sequence of 12 or 30 assignments at a time) based on the number of children recruited from each 

testing location and the timing of recruitment and testing across sites. When there was imbalance 

in condition assignments caused by participant exclusion or experimenter error, those conditions 

were replaced in subsequent blocks. This process ensured we were maintaining approximate 

balance across conditions throughout the data collection process and in the overall sample. 

Children were recruited from the Chicagoland area from February 2019 to February 2020 

through local schools, as well as other community organizations, summer camps, and our 

university database. We did not collect information about the fraction instruction received by the 

children for any individual or school. However, based on the Common Core State Standards 

(National Governors Association Center for Best Practices, 2010), it is unlikely that children had 
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much, if any, formal experience with fraction symbols. As discussed in the introduction, this 

young age group was targeted in order to investigate the effectiveness of area models with 

different unit-based features on children’s initial knowledge of fraction symbols, prior to formal 

instruction.  

Based on the 84-89% of our sample (depending on the question) that completed the 

demographic survey1, 54% of parents reported their children as Black or African American, 31% 

as White, < 1 % as Native American, <1 % as Asian, 0% as Native Hawaiian or Pacific Islander, 

10% as other or more than one race, and 23% identified as Hispanic or Latino/a/x. The sample 

also came from economically diverse backgrounds, with 50% reporting an annual family income 

below the Chicago median (which was $58,247 based on the 2019 US Census; U.S. Census 

Bureau QuickFacts) and 50% reporting the category at or above the Chicago median. More 

specifically, our sample included: 18% reporting an annual family income of $15,000 or less, 

19% between $15,000 and $34,999, 13% between $35,000 and $49,999, 7% between $50,000 

and $74,999, 12% between $75,000 and $99,999, and 30% reporting $100,000 or more. Lastly, 

the education levels of the parent or guardian who completed the demographic form (84% 

mothers, 13% fathers, 2% unidentified or nonbinary parent, 1% other guardian) also showed 

variability: 31% high school or less, 39% associate’s or bachelor’s degree (or equivalent), and 

30% graduate degree.  

Parents or legal guardians provided written consent prior to children’s participation, and 

children 7-years-old or older provided formal verbal assent. Parents of children tested in our lab 

 
1 Individual level data from the demographic survey is not made publicly available because some 

combinations of information apply to only one individual, making the data identifiable. To 

provide a general description of the sample, however, the information is presented here for the 

entire group and separated by condition in the Supplemental Materials Table S6. 
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were given $10/session as travel compensation and schools and community organizations were 

given a $50 gift card for supplies. All participating children were offered a small prize (e.g., 

sticker or small toy) after each testing session. All testing procedures were approved by the 

University of Chicago Institutional Review Board under protocol IRB17-1599 “Relational Math 

Reasoning”. 

Design 

Children participated in two testing sessions one-on-one with an experimenter, each 

lasting approximately 30 minutes and occurring approximately seven days apart (M = 7 days; 

Range: 5 days to 10 days; 173 of 195 children had sessions 7 days apart). During session one, 

children completed a pre-test battery of fraction assessments presented on a laptop computer and 

then played the fraction card game with the experimenter. In session two, children first played 

the fraction card game with the experimenter and then completed the post-test battery. The same 

set of tasks was used at both pre- and post-test across all conditions. These tasks included (in this 

order): (1) Symbolic-to-Non-Symbolic Mapping task (which of these pictures shows this 

fraction?), (2) Symbolic Comparison task (which is bigger?), (3) Symbolic Equality task (are 

these equal or not equal?), (4) Spatial Fraction Comparison task, and (5) Spatial Fraction 

Equality task. As mentioned in the Introduction, only the Symbolic-to-Non-Symbolic Mapping 

task will be included in the manuscript and all other tasks are reported in Supplemental because 

of low reliability estimates (Cronbach’s s < 0.53).  

The Fraction Card Game was identical in session one and session two. Children in all 

three between-subjects conditions completed the same fraction comparisons within the game but 

the area models differed according to the assigned condition. Given the young age of the target 

sample and the focus on part-whole area models, all fractions used in the card game and the pre- 
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and post-test measures were proper fractions between 0 and 1 that could be depicted as parts of a 

single-whole (but potentially presented in unreduced form, e.g., 2/4).  

Procedure and Stimuli 

 

Pre-Test Warm Up 

Prior to beginning the pre-test, children were asked what they thought a fraction was and 

their response was written and recorded in summarized form by the experimenter. This task was 

primarily used as a warm-up question and was not asked at post-test. Children’s responses to this 

pre-test question were double coded to gain better insight into children’s fraction knowledge 

prior to the intervention. The coders classified children’s responses as either demonstrating no 

prior knowledge about fractions (i.e., the child said they did not know or gave an answer that was 

unrelated to fractions) or as demonstrating some fraction knowledge (i.e., the child’s answer 

reflected at least a partial definition of fractions). 

Symbolic to Non-Symbolic Mapping Task (modeled after Miura et al., 1999). 

The task was administered at both pre- and post-test and was conducted on a 13-inch 

laptop computer using PsychoPy2 Version 1.85.4 (Peirce et al., 2019). There were two sets of 

stimuli, one presented at pre-test and the other presented at post-test, with the set of stimuli 

assigned to pre- versus post-test counterbalanced across individuals. Each set of stimuli included 

8 unique trials with good reliability (Cronbach’s  = .86 and .87 for each set). 

 On each trial, children were presented with a symbolic fraction centered in the upper half 

of the screen and four divided pie-charts equally spaced along the bottom half of the screen (see 

Figure 1A). The fractions (6.5 cm tall, 5.4 cm wide, presented upright with a horizontal bar) only 

included values between zero and one and the numerators and denominators were single digit 
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integers. The non-symbolic pie charts (4.7 cm diameter) included four, randomly ordered, 

options, with the numerator pieces colored red and the remaining pieces colored light yellow.  

On each trial, there were four options: (1) the correct answer (e.g., if the target is 2/5, then 2 red 

pieces and 3 yellow pieces; Figure 1A, 3rd option), (2) the numerator + denominator answer (e.g., 

2 red pieces and 5 yellow pieces; Figure 1A, 4th option), (3) the correct number of pieces, but the 

pieces are not equally sized (e.g., 2 red pieces and 3 yellow pieces, but the pieces are different 

sizes; Figure 1A, 2nd option), and (4) a different fraction with the same denominator (e.g., 4 red 

pieces and 1 yellow piece; Figure 1A, 1st option).  

 

Children were told they would see a symbolic fraction at the top of the screen and 

pictures of fractions at the bottom of the screen and their job was to choose which of the pictures 

showed the fraction at the top. On each trial, children pointed to one of the four options and the 

experimenter recorded the child’s response by pressing 1, 2, 3, or 4 on the keyboard 

(corresponding to the position of each option). The trial ended as soon as the experimenter 

pressed the key. After each trial, a fixation point appeared for 1000ms before the next trial 

started. Children had as much time as they needed to respond and if they responded that they did 

Figure 1: Example stimuli from the Symbolic to Non-Symbolic Mapping Task (Panel A) and the card game 

(Panel B), including the “front” of the card (B1), which was identical for all conditions, the “back” of the card 

in the Actively Divided and Non-Divided conditions (B2), before the experimenter applied the stencil, and the 

“back” of the card in the Pre-Divided condition (B3).  
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not know, they were told to make their best guess. The 8 trials were presented in a random order 

and children were scored based on proportion correct. 

Fraction Card Game 

 Each card (8.75 cm wide by 5.75 cm tall) had a symbolic fraction on the front and that 

same symbolic fraction, an equal sign, and a rectangle on the back (see Figure 1B). To 

distinguish each player’s cards, the experimenter’s cards had a grey border and the child’s cards 

had a green border. The symbolic fractions (2.5 cm tall by 1.8 cm wide) were presented in 

upright notation with a horizontal line between the numerator and denominator and included unit 

fractions and non-unit fractions between zero and one. The rectangle (5 cm wide by 2.5 cm tall) 

was blank for the Non-Divided and Actively Divided conditions (Figure 1, Panel B2) and was 

divided into the denominator number of pieces for the Pre-Divided condition (Figure 1, Panel 

B3).  

Children were told they would play a card game with the experimenter where each card 

had a fraction on it and that on each turn whoever had the card with the bigger fraction would get 

to keep both cards. At the end of the game whoever had the most cards won. Children were also 

told that before they decided who would keep the cards, they should put the cards on the 

designated game board (referred to as the “checking board”) and figure out which fraction was 

bigger. The checking board was a laminated piece of cardstock (15 cm tall by 10 cm wide) with 

card-sized rectangles on the top and bottom labeled “bigger” and “smaller,” respectively. The 

game consisted of two sections. Section 1 included three trials involving only unit fractions and 

Section 2 included six trials involving unit and non-unit fractions. Between the two sections 

there was a transition trial on which children were introduced to non-unit fractions. 
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On each trial, the experimenter pulled a card from their envelope and read the fraction 

label aloud: “my fraction is [fraction label, e.g., one fifth].” The experimenter then helped the 

child pull a card out of their envelop and read the fraction label aloud: “your fraction is [fraction 

label, e.g., one half].” The cards were prearranged in their respective envelopes so that children 

would progress through a set order of trials. After both cards were on the table (with only the 

symbolic fractions visible), the experimenter asked the child to decide which fraction was bigger 

and to place the card with the bigger fraction in the spot labeled “bigger” and the card with the 

smaller fraction in the spot labeled “smaller.” The experimenter then recorded the child’s initial 

response. If the child said they did not know or that the fractions were the same, they were told 

to make their best guess. After the child’s initial response, the cards were flipped over to reveal 

the rectangles and the experimenter used a condition-specific approach to fill them in. 

In the Non-Divided condition, the experimenter said “my fraction is [fraction label, e.g., 

one fifth], so let’s draw [fraction label, e.g., one fifth]” while taking a pre-measured stencil and 

using a fine-point sharpie to draw a line indicating the fraction. Then, the experimenter said: 

“now I need to color in this much out of the whole” pointing to the fraction part of the rectangle. 

Next, the experimenter used a blue colored pencil to color that section and then said: “so that 

shows [fraction label, e.g., one fifth].” This was then repeated for the child’s card. On the child’s 

card, the experimenter used the stencil and drew the fraction line in the appropriate position (to 

ensure consistency), but the child colored in their own fraction with the colored pencil.  

In the Pre-Divided condition, the experimenter said “my fraction is [fraction label, e.g., 

one fifth]. So my shape is divided into [denominator, e.g., five] equal pieces and I need to color 

in [numerator, e.g., one] out of [denominator, e.g., five] pieces.” The experimenter then colored 

in the appropriate number of pieces one at a time with the blue pencil and then said, “so that 
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shows [fraction label, e.g., one fifth].” This process was then repeated for the child’s card, but the 

child colored in their own fraction.  

In the Actively Divided condition, the experimenter said “my fraction is [fraction label, 

e.g., one fifth]. So my shape needs to be divided into [denominator, e.g., five] equal pieces.” The 

experimenter then took a pre-made stencil the size of the denominator unit and drew the 

appropriate number of divisions to fully divide the rectangle (e.g., for 1/5, divided the rectangle 

into fifths). After the division the experimenter said: “and I need to color in [numerator, e.g., 

one] out of [denominator, e.g., five] pieces” and colored in the appropriate number one at a time 

with the blue pencil, then saying “so that shows [fraction label, e.g., one fifth].” As in the other 

conditions, this was then repeated for the child’s card, on which the experimenter used the stencil 

and drew the dividing lines, but the child colored in the fraction.  

In all conditions, after both rectangles were filled in, the experimenter then asked: “Now 

that we can see the fraction pictures, which fraction do you think is bigger?” After the child 

responded, the experimenter recorded the child’s response and provided verbal feedback (i.e., 

“that’s right!” if they were correct or “actually, this fraction is bigger”). Lastly, the experimenter 

said: “that means that [fraction label] is bigger than [fraction label], so [my/your] fraction is 

biggest and [I/you] get to keep both cards!” and the cards were added to either their own or the 

child’s pile to count later. 

During the transition trial between the two sections, children were asked to think about 

what would happen if there was more than one piece. The two cards from the previous 

comparison remained visible and a third card with a “1/6” fraction on the front and a removable 

“3” in the upper corner was introduced, saying “let’s say we had three one-sixths”. The 

experimenter continued: “when that happens, we can write it like this [move the three to be on 
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top of the one, so it now says “3/6”] and we can call it three sixths.” The experimenter then filled 

in the rectangle and prompted the child to color in the correct amount to show three-sixths using 

the condition-specific process described earlier. The child was then prompted to compare three-

sixths to one-fourth (one of the fractions used in the previous comparison, which was still 

visible) and the experimenter recorded the child’s response and provided verbal feedback 

(“you’re right, three sixths is bigger than one fourth” or if the child was incorrect, “actually, 

three sixths is bigger than one fourth”). Regardless of the child’s accuracy, the child was then 

prompted to add all three cards (the two from the previous comparison and the new transition 

card) to their pile.  

At the end of the game, the experimenter and child counted the cards they collected (i.e., 

the ones they won from having the biggest fraction). The game was set up so that the child was 

always declared the winner, having collected 11 cards (they had the bigger fraction on 5 out of 9 

trials + the transition card) versus the experimenter’s 8 cards (they had the bigger fraction on 4 

out of 9 trials). 

Transparency and Openness 

 The study design, hypotheses, and analysis plan were pre-registered on aspredicted.org 

(#19466; https://aspredicted.org/c7hc6.pdf). We follow the Journal Article Reporting Standards 

for Quantitative Designs (Kazak, 2018), including reporting how we determined our sample size, 

all data exclusions, all manipulations, and all measures (although methodological details and 

results of some measures and pre-registered research questions are reported only in Supplemental 

Materials due to low task reliability, as discussed above). Analyses that were not pre-registered 

are clearly indicated when introduced in the Results section. All data, analysis code, pre-
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registration documents, and research materials are available on the Open Science Framework 

(https://osf.io/ths6m/). 

All data processing and analysis was performed in R version 4.0.1 (R Core Team, 2018) 

using RStudio (version 1.2.5001; R Studio Team, 2016), using packages from the tidyverse 

(Wickham et al., 2019), as well as ggpubr v0.4.0 (Kassambara, 2020a), rstatix v0.6.0 

(Kassambara, 2020b), effsize v0.8.0 (Torchiano, 2018), psych v2.0.09 (Revelle, 2020), apaTables 

v2.0.5 (Stanley, 2018), gt v0.2.2 (Iannone et al., 2020), and car v3.0-9 (Fox & Weisberg, 2019).  

Results 

Pre-Test Warm-Up Question 

Two coders classified children’s responses to the initial “What is a fraction?” question as 

either demonstrating no prior knowledge about fractions (i.e., the child said they did not know or 

gave an answer that was unrelated to fractions) or as demonstrating some understanding of 

fractions (i.e., the child’s answer reflected at least a partial definition of fractions). The two 

coders agreed on 97.5% of responses, and a third coder resolved disagreements (n = 5). Most 

children’s responses (71.7%) indicated they had no knowledge about fractions prior to our 

intervention (e.g., “not sure,” “subtracting,” “food”) and the remaining children (28.3%) 

demonstrated at least some understanding of fractions (e.g., “part of a whole,” “pieces of a 

circle”). Thus, prior to the intervention, the children in our sample demonstrated very limited 

understanding of what the word “fraction” means.  

How Do Different Area Models Impact Children’s Understanding of Fraction Symbols? 

To address our first research question, and as pre-registered, we used linear regression 

predicting post-test performance on the symbolic-to-non-symbolic mapping task with pre-test 

score (continuous covariate), grade (1st vs. 2nd grade), and condition (dummy coded) as 
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predictors. Although not pre-registered, we also compared performance at each time point to 

chance (0.25) and tested for significant learning in each condition separately using a mixed 

ANOVA on proportion correct with Session (2: pre and post) as a within-subjects factor and 

Grade (2: 1st, 2nd) as a between-subjects factor. Pre- and post-test means and standard deviations, 

as well as the within condition statistical analyses (i.e., one-sample t-tests comparing 

performance to chance and pre- vs. post-test comparisons within condition) are provided in Table 

1. 

 

 

The overall regression model was significant, R2 = .526, Adjusted R2  = 0.516, F(4, 190) 

= 52.7, p < 0.001, with pre-test score a significant predictor B = 0.75, 95% CI [0.65, 0.86], 

t(190) = 13.95, p < 0.001, and grade not significant B = 0.04, 95% CI [-0.03, 0.12], t(190) = 

1.22, p = 0.22. The critical test is the dummy coded predictors for condition (see Figure 2). When 

using the Actively Divided condition as the reference group, children in this condition scored 

significantly higher at post-test than children in the Pre-Divided condition, B = -0.11, SE = 0.04, 

Table 1: Descriptive Statistics in each condition at pre- and post-test 

 

Pre-Test   Post-Test  Learning 

M  SD  

one sample  

vs .25   M SD  

one sample  

vs .25 
 

2
partial 

t p t p  

Symbolic to Non-Symbolic Mapping   

 Non-Divided  0.38  0.34  3.07 0.003    0.39 0.36  3.09 0.003   0.002 

Pre-Divided  0.40  0.32  3.84 < 0.001  0.41 0.36  3.69 < 0.001  0.002 

Actively 

Divided  
0.42  0.36  3.90 < 0.001  0.54 0.37  6.31 < 0.001  0.13* 

Note: One-sample t-test (df = 64) compares children’s performance to chance (0.25; 4 options). 

Although not pre-registered, Learning compares pre vs. post-test performance within each 

condition, with alpha levels adjusted for multiple comparisons. * p < 0.0167, ** p < 0.001 
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95% CI [-0.20, -0.02], t(190) = -2.41, p = 0.02, and children in the Non-Divided condition, B = -

0.12, SE = 0.04, 95% CI [-0.20, -0.03], t(190) = -2.57, p = 0.01. Children in the Pre-Divided and 

Non-Divided conditions (reference = Pre-Divided) did not score significantly differently, B = -

0.01, SE = 0.04, t(190) = -0.17, p = 0.87. 

 

Next, given our condition differences at post-test, we looked at learning in each of the 

conditions separately (using Bonferroni adjusted  = 0.0167 for the main effect of Session in 

each of the three conditions). In the Actively Divided condition, there was a main effect of 

Session, F(1,63) = 9.26, p = 0.003, 2
partial = 0.13, with children scoring significantly higher at 

post-test than at pre-test. There was also a small main effect of Grade, F(1,63) = 4.47, p = 0.04, 

2
partial = 0.07, with 2nd graders, M = 0.45, scoring higher than 1st graders, M = 0.40. However, 

there was not a significant interaction between session and grade, p = 0.24, 2
partial = 0.02. There 

Figure 2: Performance on the Symbolic to Non-Symbolic Mapping task across condition (x-axis) 

at pre-test (dark grey, left) and post-test (light grey, right). Plots are violin plots with the mean 

proportion correct and standard error as error bars. Chance performance (0.25) is indicated with a 

dotted line.  
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were not significant main effects of Session in the Pre-Divided condition, F(1,63) = 0.14, p = 

0.71, 2
partial = 0.002, or the Non-Divided condition, F(1,63) = 0.12, p = 0.73, 2

partial = 0.002. 

Neither Grade nor the interaction between Grade and Session were significant in either of these 

conditions, all ps > 0.4, 2
partial < 0.02.  

To further investigate the change in children’s fraction knowledge in the Actively 

Divided condition, we analyzed the data in two additional ways: change at the individual child 

level and the pattern of children’s errors. Although these analyses are post-hoc and were not pre-

registered, they provide additional insight that can generate testable hypotheses for future 

research.   

First, beyond the magnitude of improvement from pre- to post-test, we also calculated the 

number of children who showed an improvement from pre- to post-test in each condition: 29/65 

(45%) in the Actively Divided condition, 21/65 (32%) in the Non-Divided condition, and 24/65 

(37%) in the Pre-Divided condition. Although there are numerically more children who 

improved in the Actively Divided condition than in the other two conditions, this pattern is not 

statistically significant, 2(2) = 2.13, p = .34. Thus, the Actively Divided condition may have led 

to larger improvements rather than impacting more children. Consistent with this interpretation, 

the children who improved in the Actively Divided condition did improve by a larger amount, M 

= 0.38, relative to the Non-Divided condition, M = 0.23, t(44.14) = 2.71, p = .01, and to the Pre-

Divided condition, M = 0.29, although this comparison was not statistically significant, t(49.84) 

= 1.44, p = .16.  

Second, the task included carefully selected incorrect responses that correspond to 

common errors, allowing us to better understand the specific kinds of errors children made and 

whether children’s increase in correct responding corresponded with a decrease in a specific type 
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of error: Unequal Units (correct denominator and numerator, but unequal sized units; option 2 in 

Figure 1A), Part/Part Interpretation (numerator + denominator, such as 2 red and 3 yellow pieces 

for 2/5; option 4 in Figure 1A), or Denominator Match (same denominator but different 

numerator, such as 4 red out of 5 for a target of 2/5; option 1 in Figure 1A). First, the most 

common error for all three conditions at both pre- and post-test was the Part/Part response (see 

Figure 3), in line with prior work on children’s whole number component bias in this task (Miura 

et al., 1999; Paik & Mix, 2003). Second, to provide some insight into what aspects of children’s 

fraction knowledge might be shifting in the Actively Divided condition, we analyzed the 

proportion of trials selecting each type of incorrect response at pre- and post-test. Numerically, 

the proportion of trials on which children in the Actively Divided condition selected each type of 

incorrect response decreased from pre- to post-test, but this decrease was only significant for the 

Unequal Units response, Mpre = .16,  Mpost = .10, t(64) = -2.31, p = .02, d = -0.29,  and was not 

significant for either the Part/Part response, Mpre = .31,  Mpost = .29, t(64) = -0.71, p = .48, d = -

0.09, or the Denominator Match response, Mpre = .10,  Mpost = .07, t(64) = -1.29, p = .20, d = -

0.16. However, the change from pre- to post-test for the various error types did not significantly 

differ (all ps > .40). Thus, this post-hoc and exploratory analysis reveals that although there is a 

numerically larger increase in children’s attention to equal sized units, the increase in correct 

responses is not attributable to a decrease in a single type of error, but rather a decrease in errors 

across all error types.  
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How Did Children’s Performance Vary on the Card Game (Additional RQ)? 

To better understand the potential mechanisms supporting children’s learning, we 

explored differences during the actual game play between conditions. Thus, although not pre-

registered, we performed a post-hoc analysis of children’s performance during the card game 

intervention itself. Specifically, we compared children’s ability to compare symbolic fractions in 

the three training conditions before and after the condition-specific area models were available. 

We isolated analyses to only the first session to assess baseline differences in the use of 

the three distinct models, before substantial learning could occur. Given that children’s 

judgements about which fraction was bigger were recorded twice, once when only the symbols 

were visible (the same across conditions) and again after the area models were constructed for 

each fraction (which differed by condition), we can investigate how performance on the game 

Figure 3: Mean proportion of trials on the Symbolic to Non-Symbolic Mapping task on 

which children selected each type of response.  
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differed across conditions as a direct result of the different area models. To see the effect of the 

specific kind of area model on children’s comparison ability, we used an ANOVA with 

Condition (3: Actively Divided, Pre-Divided, Non-Divided) as a between-subject factor and 

Judgement Type (2: Symbols Only, With Area Models) as a within-subjects factor on proportion 

correct (combined across the unit and non-unit fractions within Session 1). Twenty-seven 

children (out of the 199 who completed Session 1) were excluded from these analyses because 

they had missing game-play data resulting from the experimenter erroneously not recording at 

least one of the child’s responses during the game. Although the children were excluded for 

experimenter error, it’s possible that the experimenter error was caused by the child’s behavior 

during the game (e.g., more chaotic game play, requiring more behavioral management from the 

experimenter), resulting in systematic missingness. Notably, both included and excluded children 

scored similarly on the pre-test symbolic (Mincluded = .42, Mexcluded = .45) and non-symbolic 

fraction comparisons (Mincluded = .55, Mexcluded = .64), the two pre-test tasks most like the game 

play. Nonetheless, this limitation should be kept in mind when interpreting game play 

performance from the subset of children with complete game play data. A total of 172 children 

are included in these analyses: Actively Divided n = 57; Pre-Divided n = 59; Non-Divided n = 

56. There was a significant main effect of Condition, F(2,169) = 19.03, p < 0.001, 2
partial = 0.18, 

Judgement Type, F(1,169) = 235.13, p < 0.001, 2
partial = 0.58, and a Condition by Judgement 

Type interaction, F(2,169) = 23.9, p < 0.001, 2
partial = 0.22 (see Figure 4). 
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Given the interaction between Condition and Judgement Type, we conducted two one-

way ANOVAs across conditions on the symbolic only judgements and the judgements with area 

models separately. As would be expected, children’s scores did not significantly differ across 

conditions when making judgements about the fraction symbols alone, M(SD)Actively-Divided = 

0.50(0.23), M(SD)Non-Divided = 0.53(0.22), M(SD)Pre-Divided = 0.49(0.21), F(2,169) = 0.514, p = 

0.60, 2
partial < 0.01. However, when making judgements with the area models available, there 

were significant condition differences, F(2,169) = 48.82, p < 0.001, 2
partial = 0.37. In particular, 

children scored highest in the Non-Divided condition, M(SD)Non-Divided = 0.97(0.09), followed by 

the Actively Divided condition, M(SD)Actively-Divided = 0.76(0.21), and then the Pre-Divided 

Figure 4: Performance during the Game Play across the three conditions (x-axis), Comparing performance 

with symbols only (green, left) vs. with the condition-specific area model (pink, right) during Session 1 only. 

Plots are violin plots with the mean proportion correct and standard error as error bars. There are not 

condition differences on symbolic comparisons, but when the areas models are available, there are significant 

pairwise differences between all conditions.  
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condition, M(SD)Pre-Divided = 0.62(0.23). All pairwise comparisons were significant using  = 

0.0167 to adjust for three pair-wise comparisons and Welch’s t-tests when there was a significant 

difference in variance: Non-Divided vs. Actively Divided: t(74.6) = -6.34, p < 0.001, Cohen’s d 

= -1.30; Non-Divided vs. Pre-Divided: t(74.5) = 10.70, p < 0.001, Cohen’s d = 1.96; Actively 

Divided vs. Pre-Divided: t(114) = 3.31, p = 0.001, Cohen’s d = 0.62. Thus, replicating work in 

the proportional reasoning literature more broadly (Boyer et al., 2008; Hurst & Cordes, 2018a), 

children were more accurate comparing continuous, undivided area models than comparing 

static, divided area models. However, a novel finding that emerges from this analysis is that 

comparing models that were actively divided is at an intermediate level, falling between these 

other two models. We discuss the potential importance of this intermediate difficulty on 

children’s performance in the Discussion.   

Discussion 

In the current experiment, we report the results of a brief fraction card game that 

compared the effectiveness of using three different area models that varied in the availability and 

salience of fraction units to teach 1st and 2nd graders about fractions. As hypothesized, we found 

that actively divided area models are more effective than strictly discrete or strictly continuous 

models for improving children’s part/whole interpretation of fraction symbols. However, we also 

hypothesized that discrete area models would result in intermediate performance, between the 

actively divided and strictly continuous area models. Yet, contrary to our hypothesis, the strictly 

discrete and strictly continuous area models resulted in similarly low learning. That is, despite 

the discrete area model providing explicit information about the fraction components and being 

similar to the kinds of area models commonly used in fraction instruction, playing the game with 

discrete pre-divided area models did not help children learn the part-whole interpretation of 
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fractions. In fact, the actively divided area model was the only card game intervention to result in 

significantly higher fraction symbol mapping at post-test. Taken together, our findings align with 

the hypothesis that highlighting the denominator unit through iteration can support young 

children’s fraction learning, consistent with prior research highlighting the benefits of 

measurement models for fraction instruction (e.g., Boyce & Norton, 2016; Sophian, 2007). Our 

findings extend this research by showing that even relative to other discrete part-whole models, 

actively divided area models support young children’s initial part-whole interpretation of 

symbolic fractions, a pre-cursor skill to understanding relative fraction magnitudes.  

Differences in performance during the card game itself provide further insight into 

children’s differential use of area models. During gameplay, children in the Actively Divided 

condition scored between children in the Non-Divided condition and children in the Pre-Divided 

condition, highlighting the potential limitations of both entirely continuous and entirely discrete 

area models. Children who received the continuous area model in the Non-Divided condition 

were able to complete the card game trivially easily and did not have to confront their errors, and 

as a result did not receive any feedback or relevant information related to erroneous whole-

number strategies. In contrast, children who received the discrete area models in the Pre-Divided 

condition struggled to compare the fractions, even visually, likely because of their erroneous 

whole-number based strategies (as has been shown in prior work; Boyer et al., 2008; Ni & Zhou, 

2005). Like in the Pre-Divided condition, and unlike in the Non-Divided condition, children in 

the Actively Divided condition were forced to confront their errors when reasoning about 

discrete numerical information in the context of fractions (e.g., Ni & Zhou, 2005). Yet, in 

contrast to the more difficult Pre-Divided condition, the active iteration of units in the Actively 

Divided condition provided children with the support they needed to confront their errors 
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successfully (e.g., rely on a unit fraction; attend to number of units and size of units). Thus, one 

benefit of the actively divided area model may be that it provided the optimal level of difficulty 

and scaffolding, in line with desirable difficulty accounts of learning and development (e.g., 

Bjork, 2018; Schmidt & Bjork, 1992). Together, these findings suggest that the Actively Divided 

condition provided children with discrete information (rather than omitting it entirely, as in the 

non-divided area models) in a way that highlighted the size of the denominator units and the 

relation between unit size, number of units, and fraction size (rather than statically, as in the pre-

divided area model), thus preventing children’s default attention to countable numerical 

information only. This pattern of results underscores the importance of considering children’s 

intuitions, namely their whole number-based heuristics and errors, and how best to mitigate them 

when designing educational materials. 

Furthermore, although the importance of measurement models, and iteration in particular, 

is not new, prior work has primarily focused on the benefits of iteration for more advanced 

fraction concepts, such as moving beyond part-whole reasoning (e.g., Wilkins & Norton, 2018) 

and learning fraction arithmetic (e.g., Braithwaite & Siegler, 2021). Here, we extend this prior 

work to suggest that iteration may also play an important role in supporting even more basic 

part-whole conceptions of fractions. Taken together then, it may be that the use of measurement 

models that highlight unit iteration is an important instructional approach for many different 

aspects of fraction learning, from children’s first introduction to part/whole fractions to their later 

learning of formal fraction arithmetic. However, the current study was limited in its ability to 

investigate how actively dividing area models might support fraction magnitude knowledge and 

understanding of equivalent fractions, fraction concepts that are typically taught before fraction 

arithmetic, because children in the current sample showed low performance on these tasks, 
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resulting in low reliability. Thus, future work is necessary to better understand the role of 

iteration and units across fraction concepts and for children with different levels of fraction 

knowledge.  

In addition to being a promising approach for supporting children’s understanding of 

symbolic fractions, the current study also extends our understanding of the development of 

proportional reasoning more generally. Prior work investigating attention to discrete numerical 

information in both symbolic and non-symbolic proportional reasoning tasks has primarily 

compared representations that either do or do not have discrete countable information available 

(e.g., Boyer et al., 2008; DeWolf et al., 2015; Hurst & Cordes, 2016, 2018a). However, the 

current study suggests that it is not the mere presence of discrete countable information that 

impacts children’s strategy use and/or the effectiveness of the representation as a learning tool. 

In other words, even though both the pre-divided and actively divided area models provided the 

same non-symbolic representation of the fraction, they resulted in different patterns of 

performance and different levels of learning. This suggests that the form of the non-symbolic 

representation may not be enough to determine how children will interpret them and map them to 

their symbolic fraction system. Rather, how the form is constructed (in this case, with or without 

iterative units) may impact children’s interpretation of the non-symbolic form itself. Thus, 

discrete representations can be useful for grounding symbolic fractions, even more useful than 

continuous representations, but children need support to direct their attention to the relevant 

information within the discrete representation. Specifically, our study suggests that active 

iteration of discrete units positively impacts children’s attention to relevant denominator 

information and enhances their ability to accurately map non-symbolic proportions to fraction 

symbols.  
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This conclusion has implications for education because different instructional mediums 

offer different opportunities for using representations. For example, an area model presented in a 

textbook is necessarily a static image, limiting the use of iteration in this context. However, 

working with manipulatives or informal contexts that involve partitioning and iteration (e.g., 

equal sharing; Empson, 1999) may lead children to engage with area models in a way that 

highlights denominator as well as numerator units, while also aligning with children’s informal 

mathematical reasoning. Overall, the current findings highlight the need for work that moves 

beyond gross level comparisons of discrete vs. continuous area models or area models vs. 

numbers lines, and instead focuses on the specific features of these representations that are 

helpful to children’s proportional reasoning and symbolic fraction understanding, as well as 

which features of these representations can lead students astray. In the case of the current study, 

for example, future research is needed to better understand the mechanisms through which our 

Actively Divided condition supported learning, including which part(s) of the active division 

process (e.g., highlighting the denominator, seeing the area model transform, using an iterative 

division process) is most critical.  

 Although the actively divided version of the card game training did show success in 

improving children’s symbolic fraction knowledge, there are some limitations, both of the 

training and for the study as a whole. First, the actively divided condition led to larger gains, but 

did not impact substantially more children than the other two conditions. Suggesting that, at least 

in its current form, the training might not be a very robust intervention across many diverse 

students. However, there are two related limitations of our design that might have contributed to 

this: our training sessions were short (only two 20- to 30-minute sessions, one week apart) and 

the children tested were very young. Working with young children was a deliberate decision so 
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that we could investigate children’s initial understanding of fractions before they have much (or 

any) formal fraction input. However, this may have limited our ability to reliably measure and 

impact more advanced components of children’s fraction understanding, such as their ability to 

compare the magnitude of fractions or judge the equivalence of fractions. The low reliability of 

these measures and near chance performance of participants further highlight children’s 

difficulty with these tasks. Furthermore, children who were particularly unfamiliar with fractions 

may have needed more time to benefit from the training. Thus, it may be that additional training 

and/or training that is threaded throughout the curriculum would have led to larger learning gains 

and allowed more children to benefit from the intervention. Together, the limited training we 

provided to children and the difficulty they had with most of the tasks weakened our ability to 

make conclusions about the effectiveness of our intervention in supporting more advanced skills 

(although, see Supplemental Materials for details on these tasks) and may have restricted the 

benefit of the intervention to a subset of children. Additionally, we did not include a delayed 

post-test in the current study, making it unclear whether the learning gains we found are 

sustained over time. Future research is necessary to examine whether older children’s fraction 

knowledge may also benefit from our actively divided area model for different and more 

advanced fraction concepts and whether the extended use of these models would lead to stronger 

learning gains.   

Second, a potentially confounding explanation of our findings is that the Actively 

Divided training condition may have involved more game play time. Although we did not 

systematically time the sessions, it is possible that there were systematic condition differences in 

the time spent with the experimenter because drawing many lines and coloring (Actively Divided 

condition) likely took longer than either not drawing any lines and only coloring (Pre-Divided 
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condition) or only drawing one line and coloring (Non-Divided condition). However, it is 

important to note that all sessions were fairly short (as discussed above), meaning that any 

systematic variation would likely be small. Furthermore, anecdotally, the length of the sessions 

varied based on many other factors, including individual differences in the child (e.g., how 

carefully they colored) and the experimenter, which likely overshadowed potential systematic 

time differences across conditions. 

 Lastly, the current study carefully compared three different methods of fraction 

representation but was limited in that only rectangular area models in the training tasks and 

proper fractions between zero and one were used. It remains an open question whether a similar 

dynamic and active division would be as effective, or potentially more effective, for other 

models, such as number lines or pie charts, and when incorporating a wider range of fraction 

values. One of the potential benefits of number lines over area models is representing fractions 

beyond one, which require multiple wholes (e.g., 4/3 requires one complete whole, 3/3, plus part 

of a whole, 1/3). Other work suggests that, in general, number lines are more effective than area 

models for teaching fraction magnitudes (Gunderson et al., 2019; Hamdan & Gunderson, 2017) 

and the number line representation may be even more likely to draw on children’s measurement 

concepts (Siegal & Smith, 1997). Thus, it may be that number lines, when paired with the active 

division that highlights unit-size, may be a particularly effective and generalizable approach for 

incorporating measurement models into fraction instruction. Furthermore, it is worth noting that 

the rectangular area model used in the current training differed from typical pie chart 

representations because the fraction unit was iterated only across one dimension, from left to 

right, whereas pie charts are typically divided into segments around the center, resulting in units 

along two dimensions. Although children were able to generalize from the rectangular area 
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models used during the training to circular pie charts used during post-test, whether the training 

itself would have also been effective with pie charts, or whether the unidirectional iteration is an 

important feature of these models, is an open question. Importantly, building competency with 

fractions involves the ability to flexibly and accurately use multiple representations (e.g., Rau & 

Matthews, 2017). Thus, more research is needed to understand whether these same mechanisms 

apply to other types of fraction representations and to develop instructional guidelines for how to 

best integrate the use of multiple representations to teach fractions.  

In conclusion, we provided evidence that area models can be effective for children’s 

initial learning of fraction symbols, but that dynamically and iteratively dividing area models is a 

more effective approach than presenting static divided area models or continuous non-divided 

area models. Directing children’s attention to the relevant features within an area model, in this 

case through unit iteration, may be necessary for using them effectively. These findings highlight 

the importance of considering the development of children’s intuitions about educationally 

relevant concepts, including their common incorrect heuristics or systematic errors, prior to 

formal instruction and how educational materials may interact with those intuitions by direction 

children’s attention to different and more relevant features.   
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